مطالعه هیستومورفولوژی و بررسی تغییرات بیوشیمایی کلیه ماهی کفال خاکستری (Mugil cephalus) مواجه شده با نانوذرات اکسیدآهن و اسپیرولینا پلاتنسیس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی بافت‌شناسی مقایسه‌ای، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران

2 استاد گروه علوم پایه، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران

3 استاد گروه بهداشت و بیماری‌های آبزیان، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران

10.22055/ivj.2022.328211.2442

چکیده

    استفاده روزافزون از نانوذراتی مانند اکسیدآهن و کاربردهای فراوان آن منجر به تخلیه و ورود آن­ها به محیط­ های آبی شده و ممکن است با تداخل در فرآیندهای فیزیولوژیک برای ارگانیسم­ های آبزی خطر ایجاد کند.  از طرف دیگر اسپیرولینا با دارا بودن خواص آنتی اکسیدانی و درمانی فراوان، به عنوان یک مکمل غذایی در آبزی پروری کاربرد دارد.  هدف از این مطالعه بررسی اثرات مصرف خوراکی نانوذرات اکسیدآهن و اثرات درمانی جلبک اسپیرولیناپلاتنسیس بر هیستومورفولوژی کلیه و سطوح سرمی اوره، کراتینین، اسیداوریک در ماهی کفال خاکستری (Mugil cephalus) بود.  تعداد 72 قطعه ماهی کفال خاکستری با میانگین وزن (14/1± 79/22 گرم) و طول (194/0 ± 322/12 سانتیمتر) پس از دو هفته سازگاری، به طور تصادفی در 11 آکواریوم 40 لیتری تقسیم شدند.  تیمارها شامل گروه­های 3 روزه (کوتاه مدت) و 60 روزه (بلند مدت) دریافت کننده 15میلی­گرم بر کیلوگرم نانوذرات اکسیدآهن، 300میلی­گرم بر کیلوگرم جلبک اسپیرولیناپلاتنسیس و ترکیب هر دو باهم بود.  مطالعات هیستولوژیک و هیستوموفومتریک کلیه شامل اندازه قطر دهانه داخلی لوله­ های دور و نزدیک، ارتفاع سلول­های جداره لوله­ های دور و نزدیک، قطر جسمک کلیوی، قطر کلافه مویرگی و اندازه فضای ادراری (کپسول بومن) انجام شد.  سپس سطح سرمی اوره، اسیداوریک و کراتینین مورد سنجش قرار گرفت.  نتایج حاصله با استفاده از نرم­افزار SPSS نسخه 26 و آزمون یک طرفه ANOVA و آزمون تکمیلی Tukey تجزیه و تحلیل شدند.  نتایج نشان داد که مصرف نانوذرات اکسیدآهن به مدت 60 روز منجر به تغییرات معنی­داری در تمام فاکتورهای مورد بررسی به جز جسمک کلیوی در مقایسه با گروه کنترل شد.  در مقابل جلبک اسپیرولیناپلاتنسیس باعث کاهش معنی­دار  در قطر دهانه داخلی لوله­ های پیچیده دور و نزدیک و افزایش ارتفاع سلول­های جداره لوله ­های پیچیده دور و نزدیک شد که این افزایش در لوله­ های دیستال معنی­دار بود.  در مورد فضای ادراری نیز اسپیرولینا پلاتنسیس باعث کاهش اندازه فضای ادرای شد که این کاهش معنی­دار نبود.  نتایج نشان داد که عملکرد اسپیرولینا دقیقا در جهت عکس اثرات القا شده توسط نانوذرات اکسیدآهن بود و به عبارتی می­تواند صدمات و ضایعات ایجاد شده توسط نانوذرات را خنثی کند.  در مورد اوره نیز مشاهده می­شود که نانوذرات اکسید آهن باعث کاهش جزیی در سطح سرمی اوره می­شود اما جلبک میزان اوره سرم را افزایش می­دهد که در هیچ کدام این تغییرات معنی­ دار نبود.  جلبک از افزایش زیاد سطح سرمی کراتینین و کاهش زیاد اسید اوریک ناشی از نانوذرات جلوگیری کرده و به نحوی دارای عملکرد جبرانی بود.

کلیدواژه‌ها

موضوعات


Abdelhalim, M.A.K., & Jarrar, B.M. (2012). Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration. Journal of Nanobiotechnology, 10: 5-14.
Afzali, S.F., Sharifpour, I., Soltani, M., & Abtahi, B. 2013. Investigating tissue changes in the liver, kidney and gill of rainbow trout (Onchorhynchus mykiss) caused by bathing with Aquajerm disinfectant. Renewable natural resources research. 1: 63-70.
Askri, D., Ouni, S., Galai, S., Chovelon, B., Arnaud, J., Sturm, N., Lehmann, S.G., Sakly, M., Amara, S., &  Seve, M. (2019). Nanoparticles in foods? A Multiscale physiopathological investigation of Iron Oxide Nanoparticle effects on Rats after an acute oral exposure: trace element biodistribution and cognitive capacities. Food & Chemical Toxicology, 127:173-181.
Askri, D., Ouni, S., Galai, S., Chovelon, B., Arnaud, J., Sturm, N., Lehmann, S.G., Sakly, M., Seve, M., & Amara, S. (2018). Sub-acute intravenous exposure to Fe2O3nanoparticles does not alter cognitive performances and catecholamine levels, but slightly disrupts plasma iron level and brain iron content in rats. Journal of Trace Elements in Medicine and Biology, 50: 73–79.
Bailey, S.E., Olin, T.J., Bricka, R.M. & Adrian, D.D. (1999): A review of potentially lowcost sorbents for heavy metals. Water Research, 33: 2469–2479.
Basir, Z., & Peyghan, R. (2020). Histomorphology of excretory kidney of, Common carp, Cyprinus carpio during different salinity adaptation. Iranian Veterinary Journal, 16(2): 22-28.
Belay, A. (2002). The Potential Application of Spirulina (Arthrospira) as a Nutritional and Therapeutic Supplement in Health Management. Journal of the American Nutraceutical Association, (5): 27-48.
Bhatt, I. (2011). Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere, 308-311.
Chen, T., & Wong, Y.S., (2008). In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. Journal of Agricultural and Food Chemistry, 56(12): 4352–4358.
Chenari, F., Morovvati, H., Ghazilou, A., Savari, A., & Ronagh, M.T. (2001). Rapid variation in kidney histology in spotted scat Scatophagus argus on exposed to abrupt salinity changes. Iranian Journal of veterinary research, 12 (336): 256-261.
Ciferri, O. (1983): Spirulina, the edible microorganism. Microbiology Reviews, 47: 551-578.
Dunphy, K.A., Finnegan, M.P., & Banfield, J.F. (2006). Influence of surface potential on aggregation and transport of Titania nanoparticles. Environmental Science and Technology, 40:7688–7693.
Sahooli, M., Sabbaghi, S., & Saboori, R. (2012). Synthesis and characterization of mono sized CuO nanoparticles. Materials science, 81: 161- 172.
Gad, A.S., Khadrawy, Y.A., El-Nekeety, A.A., Mohamed, S.R., Hassan, N.S., & Abdel-Wahhab, M.A. (2011). Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition, 27: 582-589.
Gagnon, M., Maguire, M., MacDermott, M., & Bradford, A. (2002). Effects of creatine loading and depletion on rat skeletal muscle contraction. Clinical Experimental Pharmacology and Physiology, 29: 885-890.
Gholami, A., Abdi, R., Shirali, S., & Basir, Z. (2018). Histophysiology of Head Kidney and Blood Lymphatic System in Acipenserpersicus in Cold and Warm Seasons. Journal of Oceanography, 9 (33): 59-65.
Gu, Y.G., Lin, Q., Wang, X.H., Du, F.Y., Yu, Z.L. & Huang, H.H. (2015): Heavy metal concentrations in wild fishes captured from the South China Sea and associated health risks. Marine Pollution Bulletin, 96: 508-512.
Harris, C., Dixon, M., & Hansen, J.M. (2004) Glutathione depletion modulates methanol, formaldehyde and formate toxicity in cultured rat conceptuses. Cell Biology and Toxicology, 20: 133-145.
Hassan, A.M., Abdel-Aziem, S.H., & Abdel-Wahhab, M.A. (2012). Modulation of DNA damage and alteration of gene expression during aflatoxicosis via dietary supplementation of Spirulina (Arthrospira) and Whey protein concentrate. Ecotoxicology and Environmential Safety, 79: 294–300.
Hwang, J.H., Lee, I.T., Jeng, K.C., Wang, M.F., Hou, R.C.W., Wu, S.M., & Chan, Y.C. (2011). Spirulina prevents memory dysfunction, reduces oxidative stress damage and augments antioxidant activity in senescence-accelerated mice. Journal of Nutritional Science and Vitaminology, 57: 186-191.
Ibrahim, A.E., & Abdel-Daim, M.M. (2015). Modulating effects of Spirulina platensis against tilmicosin-induced cardiotoxicityin mice. Cell Journal, 17: 137-144.
Karadeniz, A., Cemek, M. & Simsek, N. (2009): “The Effects of Panax Ginseng and Spirulina platensis on Hepatotoxicity Induced by Cadmium in Rats.” Ecotoxicology and Environmental Safety. 72 (1): 231-235.
Khashan, K.S., Sulaiman, G.M. & Abdulameer, F.A. (2016). Synthesis and Antibacterial Activity of CuO Nanoparticles Suspension Induced by Laser Ablation in Liquid. Arabian Journal Science and Engineering, 41, 301–310.
Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., & Lead, J.R. (2008). Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry. (27):1825–1851
Kurd, F. & Samavati, V. (2015). Water soluble polysaccharides from Spirulina platensis: Extraction and in vitro anti-cancer activity. International Journal of Biological Macromolecules, 74: 498-506.
Liu, M., Lu, S., Wei, H., Zhang, L.,d., Ma, M., Lv, P., Ma, M., Yu, W., Wang, J., Zhang, M., Zhang, Y., & Li, Y. (2018). ULK1-regulated autophagy: A mechanism in cellular protection for ALDH2 against hyperglycemia. Toxicology Letters, 283: 106.115.
Mirali, A., Movahedinia, A., Abdi, R., & Salati, A. (2013). Histological structure of kidney in Sobaity, Sparidentex hasta. Journal of Marine Biology, 5 (2): 71-80.
Mojabi, I., Nazifi Habibabadi, S. & Safi, Sh. 2003. Veterinary Clinic Biochemistry, Nourbakhsh Press, Tehran, pages: 385-393.
Morovvati, H., Abdi, R., & Shamsi, M.M. (2016). Effect of different salinity concentration on kidney of benni, Barbussharpeyi. Iranian Scientific Fisheries Journal, 25 (5): 159-164.
Morovvati, H., Mahabady, M.K., & Shahbazi, S. (2012). Histomorphological and anatomical study of kidney in berzem (Barbus pectoralis) International Journal of Fisheries and Aquaculture, 4 (11): 221-227.
Mortazzavi Tabrizi, J., Sasani, F. & Jalali Jafari, B. 2010. Examination of serum levels of creatinine, urea and uric acid in rainbow trout (Oncorhyncus mykiss) suffering from nephrocalcinosis. Veterinary clinical pathology. 1(3): 209-216.
Muller, N.C. & Nowack, B. (2015). Exposure modeling of engineered nanoparticles in the environment. Environmental Science and technology, (42), 4447-4453.
Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., & Kumar, D.S., (2010). Nanoparticulate materials delivery to plants. Plant Science, 179:154–163.
Patel S, Jana S, Chetty R, Thakore S, Singh M, & Devkar R. (2019). Toxicity evaluation of magnetic iron oxide nanoparticles reveals neuronal loss in chicken embryo. Drug and Chemical Toxicology, 42(1):1-8.
Prasad, S., Kumar, D., Chandrakas, L., Nidhin, Dr. M., & Velayudhannair, K. (2019).  Effects of Zerovalent Iron and Iron Oxide Nanoparticles on White Leg Shrimp, Litopenaeus vannamei (Boone): A Comparative Study of Toxicity, Bioaccumulation and Oxidative Stress. International Journal of Pharmacy and Biological Sciences, 9: 71-79.
Ravi, M., De, S.L., Azharuddin, S.F.D. & Paul, S. (2010): The beneficial effects of spirulina focusing on its immunomodulatory and antioxidant properties. Nutrition and Dietary Supplements, 2: 73–83.
Rumiani, E., Abdi, R., Zolgharnein, H., Morovvati, H., & Savari, A. (2010). Histology of kidney tubules and  NA+-K+ ATPase immonolocalization of ionocyte cells in the tubules of grouper jeveniles (Epinephelus coioides). Journal of Marine Sciences and Technology, 9 (1), 4-12.
Rumiani, E., Abdi, R., Zolgharnein, H., Savari, A., & Morovvati, H. (2011). Ultra Structure of Excretory Organ (Kidney) in Juvenile Grouper, Epinephelus coioides. Journal of the Persian Gulf, 2 (6): 45-52.
Saleh, M. (2006). Cultured Aquatic Species Information Programme (CASIP). Mugil cephalus. FAO Fisheries and Aquaculture Department; FAO: Rome, Italy.
Scudiero, R., Creti, P., Trinchella, F. & Esposito, M.G. (2014): Evaluation of cadmium, lead and metallothionein contents in the tissues of mussels (Mytilus galloprovincialis) from the Campania coast (Italy): Levels and seasonal trends. Comptes Rendus Biologies, 337: 451-458.
Siddiqui, M.H., Al-Whaibi, M.H., Mutahhar, M.F., & Al-Khaishany, Y. (2015). Role of Nanoparticles in Plants.  Springer International Publishing Switzerland. 2: 19-35.
Singh, N., Jenkins, G.J.S., Asadi, R., & Doak, S.H. (2010). Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reveiws., 1:53-58.
Valdiglesias, V., Fernandez-Bertolez, N., Kilic, G., Costa, C.,  Costa, S., Fraga, S., Bessa, M.J., Pasaro, E., Teixeira, J.P., & Laffon, B. (2016). Are iron oxide nanoparticles safe? Current knowledge and future perspectives. Journal of Trace Elements in Medicine and Biology, 38: 53–63.
Valdiglesias, V., Fernandez-Bertolez, N., Kilic, G., Costa, C., Costa, S., Fraga, S., Bessa, M.J., Pasaro, E., Teixeira, J.P., & Laffon, B. (2016). Are iron oxide nanoparticles safe? Current knowledge and future perspectives. Journal of Trace Elements in Medicine and Biology, 38:53-63.
Vidya, P.V. & Chitra, K.C. (2019): Irreversible Histopathological Modifications Induced by Iron Oxide Nanoparticles in the fish, Oreochromis mossambicus (Peters, 1852). Biological Forum- an international journal. 11(1): 01-06.
Villacis, R.A.R., Filhoa, J.S., Pina, B., R.B., Azevedoa, Pic-Taylor, A., Mazzeu, J.F., & Grisolia, C.K.  (2017). Integrated assessment of toxic effects of maghemite (γ-Fe2O3) nanoparticles in zebrafish’, Aquatic Toxicology, 191: 219-225.
Zaza, S, de Balogh, K., Palmery, M., Pastorelli, A., & Stacchini, P. (2015): Human exposure in Italy to lead, cadmium and mercury through fish and seafood product consumption from Eastern Central Atlantic Fishing Area. Journal of Food Composition and Analysis. 40: 148-153.