Effects of uncontrolled queen importation and migratory beekeeping on the racial purity and spermatological parameters of honey bee (Apis mellifera anatoliaca) population in Central Anatolia

نوع مقاله : مقاله پژوهشی


1 Ph.D Student, Department of Reproduction and Artificial Insemination, Veterinary Faculty, Kırıkkale University, Kırıkkale, Türkiye and Institute of Health Sciences, Ankara University, Ankara, Türkiye

2 Professor, Department of Reproduction and Artificial Insemination, Veterinary Faculty, Kırıkkale University, Kırıkkale, Türkiye


Widespread immigrant beekeeping activity, inadequate quality queen bee production and the excess of uncontrolled crossbreeding are great problems for the quality of honey bee races in Türkiye. However, the effects of uncontrolled crossbreeding on the spermatological parameters are not fully known. In this study, samples were analyzed in terms of morphometric parameters such as cubital index, hantel index and discoidal shift. Drones belonging to the same colonies were investigated in terms of spermatological parameters such as total motility, Plasma Membrane Integrity (PMI), Mitochondrial Membrane Potential (MMP) and spermatozoa concentration (SCON). The wing index values of the samples were similar to the wing values of some races. Racial similarities rates were50% Caucasian (A. m. caucacia), 49% Anatolian (A. m. anatoliaca), 24% Brown (A. m. mellifera), 13% Italian (A. m. ligustica) and 8% Carnolian (A. m. carnica). These results showed that the expected Anatolian race in the region had changed greatly and there is a danger of crossbreeding of bee races (Apis mellifera anatoliaca) in Central Anatolia Region. The averages of spermatological parameters were 85% motility, 82% PMI, 78% MMP and 5.9 × 109/ml sperm concentration. In addition, no significant correlative relationship was found between morphometric and spermatological parameters (p˃0.05). In this study, the samples of honey bee colonies in the Central Anatolia Region showed random and uncontrolled crossbreeding among different races. The spermatological parameters were found to be sufficient for fertility but there was no significant relationship detected statistically between the spermatological and morphometric parameters.



Alattal, Y., Alsharhi, M., Alghamdi, A., & Fuchs, S. (2019). Characterization of Socotra (Yemen) honey bees (Apis mellifera) using morphometric and genetic markers. Bulletin of Insectology, 72(2), 281–285.
Alçay, S., Çakmak, S., Cakmak, I., Aktar, A., Yılmaz, M., Üstüner, B., Duman, M., Özkan, H., Akkaya, Y., & Sağırkaya, H. (2022). Honey bee drone (Apis mellifera) sperm cryopreservation with rainbow trout seminal plasma supplemented extenders. Journal of the Hellenic Veterinary Medical Society, 1(73).
Almeida, R., & Espencer Egea Soares, A. (2002). Usage of green coconut water and different tissue culture media for in vitro honey bee semen storage (Apis mellifera; Hymenoptera: Apoidea). Interciencia, 27(6), 317–321.
Ben Abdelkader, F., Çakmak, İ., Çakmak, S. S., Nur, Z., İncebıyık, E., Aktar, A., & Erdost, H. (2021). Toxicity assessment of chronic exposure to common insecticides and bee medications on colony development and drones sperm parameters. Ecotoxicology, 30(5), 806–817.
Ben Abdelkader, F., Kairo, G., Tchamitchian, S., Cousin, M., Senechal, J., Crauser, D., Vermandere, J. P., Alaux, C., Le Conte, Y., Belzunces, L. P., Barbouche, N., & Brunet, J. L. (2014). Semen quality of honey bee drones maintained from emergence to sexual maturity under laboratory, semi-field and field conditions. Apidologie, 45(2), 215–223. https://doi.org/10.1007/s13592-013-0240-7
Bratu, I. C., Igna, V., Simiz, E., Dunea, I. B., & Pătruică, S. (2022). The Influence of Body Weight on Semen Parameters in Apis mellifera Drones. Insects, 13(12), 1141.
Bouga, M., Alaux, C., Bienkowska, M., Büchler, R., Carreck, N. L., Cauia, E., ... & Wilde, J. (2011). A review of methods for discrimination of honey bee populations as applied to European beekeeping. Journal of apicultural research, 50(1), 51-84.
Cauia, E., Usurelu, D., Magdalena, L. M., Cimponeriu, D., Apostol, P., Siceanu, A., Holban, A.,& Gavrila, L. (2008). Preliminary researches regarding the genetic and morphometric characterization of honeybees (A. mellifera L.) from Romania. Scientific Papers Animal Science and Biotechnologies, 41(2), 278–286.
Ciereszko, A., Wilde, J., Dietrich, G. J., Siuda, M., Bąk, B., Judycka, S., & Karol, H. (2017). Sperm parameters of honeybee drones exposed to imidacloprid. Apidologie, 48(2), 211–222.
Cobey, S. W., Tarpy, D. R., & Woyke, J. (2013). Standard methods for instrumental insemination of Apis mellifera queens. Journal of Apicultural Research, 52(4). https://doi.org/10.3896/IBRA.
Collins, A. M. (2004). Sources of variation in the viability of honey bee, Apis mellifera L., semen collected for artificial insemination. Invertebrate Reproduction & Development, 45(3), 231–237.
Collins, A. M., & Pettis, J. S. (2001). Effect of varroa infestation on semen quality. American Bee Journal, 141(8), 590.
Duay, P., De Jong, D., & Engels, W. (2002). Decreased flight performance and sperm production in drones of the honey bee (Apis mellifera) slightly infested by Varroa destructor mites during pupal development. Genet. Mol. Res, 1(3), 227–232.
Engel, M.S. (1999). The taxonomy of recent and fosil honey bees(Hymenoptera: Apidae; Apis), J. Hymenoptera Res., 8, 165–196.
Henriques, D., Chávez-Galarza, J., SG Teixeira, J., Ferreira, H., J. Neves, C., Francoy, T. M., & Pinto, M. A. (2020). Wing geometric morphometrics of workers and drones and single nucleotide polymorphisms provide similar genetic structure in the Iberian honey bee (Apis mellifera iberiensis). Insects, 11(2), 89.
Johnson, R. M., Dahlgren, L., Siegfried, B. D., & Ellis, M. D. (2013). Effect of in-hive miticides on drone honey bee survival and sperm viability. Journal of Apicultural Research, 52(2), 88–95.
Kambur, M., & Kekeçoğlu, M. (2018). The current situation of Turkey honey bee (Apis mellifera L.) biodiversity and conservations studies. Biological Diversity and Conservation, 11(1), 105–119.
Koeniger, G., Koeniger, N., Tingek, S., & Phiancharoen, M. (2005). Variance in spermatozoa number among Apis dorsata drones and among Apis mellifera drones. Apidologie, 36(2), 279–284.
Loeza-Concha, H., Domínguez-Rebolledo, Á., Copas-Medina, K., Vivas-Rodríguez, J., Escalera-Valente, F., & Ramón-Ugalde, J. (2019). Effect of egg yolk on sperm cryopreservation of drone (Apis mellifera). Abanico Veterinario, 9.
Modaber, M., Nazemi Rafie, J., & Rajabi-Maham, H. (2019). Population genetic structure of native Iranian population of Apis mellifera meda based on intergenic region and COX2 gene of mtDNA. Insectes Sociaux, 66(3), 413–424.
Morais, L. S., Araujo Neto, E. R., Silva, A. M., Marinho, D. E. L., Bezerra, L. G. P., Velarde, J. M. D. S., Silva, A. R., Gramacho, K. P., & Message, D. (2022). Sperm characteristics of Africanized honey bee (Apis mellifera L.) drones during dry and wet seasons in the Caatinga biome. Journal of Apicultural Research, 1–8.
Murray, J. F., van der Horst, G., Allsopp, M., & Kotzé, R. C. M. (2022). A new fluorescent method to determine honey bee sperm motility parameters with computer-aided sperm analysis. Journal of Apicultural Research, 0(0), 1–9. https://doi.org/10.1080/00218839.2022.2090729
Ostroverkhova, N. V, Konusova, O. L., Kucher, A. N., Kireeva, T. N., Vorotov, A. A., & Belikh, E. A. (2015). Genetic diversity of the locus COI-COII of mitochondrial DNA in honeybee populations (Apis mellifera L.) from the Tomsk region. Russian Journal of Genetics, 51(1), 80–90.
Otis G.W. (1996). Distribution of recently recognized species of honeybees (Hymenoptera: Apidae:Apis) in Asia, J. of Kansas Entomol. Soc., 69, 311-333.
Quartuccio, M., Cristarella, S., Scrofani, A., Biondi, V., De Majo, M., Mannarino, C., Cravana, C., Medica, P., & Fazio, E. (2020). The sperm of Apis mellifera siciliana and Apis mellifera ligustica: A preliminary and comparative note. Journal of Apicultural Research, 59(5), 1011–1016.
Rhodes, J. W., Harden, S., Spooner-Hart, R., Anderson, D. L., & Wheen, G. (2011). Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie, 42(1), 29–38.
Ruttner, F. (2013). Biogeography and taxonomy of honeybees. Springer Science \& Business Media.
Slater, G. P., Smith, N. M. A., & Harpur, B. A. (2021). Prospects in connecting genetic variation to variation in fertility in male bees. Genes, 12(8), 1251.
Stoian, R.-O., Păpuc, T., & Petrescu-Mag, I. V. (2020). The influence of temperature on the gonadal maturation of the drone of Apis mellifera (Insect: Hymenoptera: Apidae). Animal Biology & Animal Husbandry, 12(2), 49–69.
Yániz, J. L., Silvestre, M. A., & Santolaria, P. (2020). Sperm quality assessment in honey bee drones. Biology, 9(7), 1–16. https://doi.org/10.3390/biology9070174
Zhao, H., Mashilingi, S. K., Liu, Y., & An, J. (2021). Factors influencing the reproductive ability of male bees: Current knowledge and further directions. Insects, 12(6), 529.