تأثیر فعالیت سرمی کاتالاز و سوپراکسید دسموتاز بر کتوز تحت بالینی و نرخ آبستنی در اولین تلقیح در گاوهای شیری هلشتاین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکترای حرفه ای دامپزشکی، دانشکده دامپزشکی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران

2 استادیار، گروه علوم درمانگاهی، دانشکده دامپزشکی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران

چکیده

    یکی از ناهنجاری‌های متابولیکی که در اثر اختلال در متابولیسم انرژی در اوایل دوره­ی شیردهی به وجود می‌آید، بیماری کتوز است. جمعیت مورد مطالعه، 45 رأس گاو شیری پر تولید نژاد هلشتاین بین 3 تا 5 شکم زایش از مزارع پرورش گاوهای شیری در توابع استان اصفهان می­باشد. نمونه خون هر گاو 21-7 روز بعد از زایمان اخذ و نمونه‌های سرمی تهیه گردید. اندازه­گیری بتاهیدروکسی بوتیرات (hydroxybutyrate; BHBA -β) توسط کیت رندوکس، فعالیت سوپراکسید دسموتاز به روش nitroblue tetrazolium (NBT) و فعالیت کاتالاز سرم به کمک شیوه­ی پیشنهادی Goth (1991) انجام شد. پس از انجام تست کلین و تایید سلامت دستگاه تناسلی به روش اولترا سونوگرافی، برنامه­ی همزمانی تخمک­گذاری برای همه­ی گاوها اجرا شد.  در 45 تا 50 روز بعد از زایمان، اولین تلقیح انجام و در همین زمان با استفاده از دستگاه سونوگرافی تونیسیته رحم و وضعیت تخمدان‌ها از نظر قطر فولیکولی ارزیابی گردید. همچنین حضور یا عدم حضور علایم فحلی هم در تمامی گاوها ثبت شد. در 32 روز پس از تلقیح نیز وضعیت آبستنی گاوها توسط دستگاه اولترا سونوگرافی تشخیص و ثبت گردید. نتایج مطالعه­ی حاضر نشان داد که غلظت سوپراکسید دسموتاز (04/0 =P) و کاتالاز (08/0 =P) در گاوهای شیری مبتلا به کتوز تحت بالینی نسبت به گاوهای سالم کاهش داشته است، همچنین میزان BHBA در گاوهای آبستن با اولین تلقیح به طور معنی­داری کمتر از گاوهای غیر آبستن بود. به طور کلی می­توان چنین نتیجه گرفت که شاخص‌های استرس اکسیداتیو می‌تواند به عنوان بیومارکرهای امیدوار کننده‌ای برای پیشگویی کتوز تحت بالینی در گاوهای شیری در دوره­ی پس از زایمان باشد.

کلیدواژه‌ها


Agarwal, A., Gupta, S., and Sharma, R. K. (2005). Role of oxidative stress in female reproduction. Reproductive biology and endocrinology, 3 (1): 28.
Al-Gubory, K. H., Fowler, P. A., and Garrel, C. (2010). The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. The international journal of biochemistry & cell biology, 42 (10): 1634-1650.
Al‐Qudah, K. M. (2011). Oxidant and antioxidant profile of hyperketonemic ewes affected by pregnancy toxemia. Veterinary clinical pathology, 40 (1): 60-65.
Al-Rawashdeh, O.F. (1999). Prevalence of ketonemia and associations with herd size, lactation stage, parity, and postparturient diseases in Jordanian dairy cattle. Preventive veterinary medicine, 40 (2): 117-125.
Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., and Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5 (1): 9-19.
Castillo, C. R. I. S. T. I. N. A., Hernández, J. O. A. Q. U. Í. N., López-Alonso, M. A. R. T. A., Miranda, M. A. R. T. A., and Luís, J. (2003). Values of plasma lipid hydroperoxides and total antioxidant status in healthy dairy cows: preliminary observations. Archives Animal Breeding, 46 (3): 227-233.
Castillo, C., Hernandez, J., Bravo, A., Lopez-Alonso, M., Pereira, V., and Benedito, J. L. (2005). Oxidative status during late pregnancy and early lactation in dairy cows. The Veterinary Journal, 169 (2): 286-292.
Castillo, C., Hernandez, J., Valverde, I., Pereira, V., Sotillo, J., Alonso, M. L., and Benedito, J. L. (2006). Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Research in veterinary Science, 80 (2): 133-139.
Celi, P. (2010). The role of oxidative stress in small ruminants' health and production. Revista Brasileira de Zootecnia, 39: 348-363.
Celi, P. (2011a). Biomarkers of oxidative stress in ruminant medicine. Immunopharmacology and Immunotoxicology, 33 (2): 233-240.
Celi, P. (2011b). Oxidative stress in ruminants. In: Mandelker, L., Vajdovich, P. (Eds.), Studies on Veterinary Medicine: Oxidative Stress in Applied Basic Research and Clinical Practice, vol. 5. Humana Press, 191–231.
Duffield, T. F. (2006). Minimizing subclinical metabolic diseases in dairy cows. Adv. Dairy Technology, 18: 43-55.
Duffield, T. (2004). Monitoring strategies for metabolic disease in transition dairy cows. Medecin Veterinaire Du Quebec., 34: 34-35.
Epperson, W. B. (2005). Risk factors for metabolic disease. Tri-State Dairy Nutrition Conference, 31-35
Garro, C. J., Mian, L., and Cobos Roldán, M. (2014). Subclinical ketosis in dairy cows: prevalence and risk factors in grazing production system. Journal of animal physiology and animal nutrition, 98 (5): 838-844.
Geishauser, T., Leslie, K., Tenhag, J. and Bashiri, A. (2000). Evaluation of eight cow-side ketone tests in milk for detection of subclinical ketosis in dairy cows. Journal of dairy science, 83(2): 296-299.
Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica chimica acta, 196 (2-3): 143-151.
Guerin, P., El Mouatassim, S., and Menezo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human reproduction update, 7 (2): 175-189.
Karimi, N., Mohri, M., Azizzadeh, M., Seifi, H. A., and Heidarpour, M. (2016). Relationships between trace elements, oxidative stress and subclinical ketosis during transition period in dairy cows. Iranian Journal of Veterinary Science and Technology, 7 (2): 46-56.
Kato, H., Sugino, N., Takiguchi, S., Kashida, S., and Nakamura, Y. (1997). Roles of reactive oxygen species in the regulation of luteal function. Reviews of reproduction, 2 (2): 81-83.
Kinnula, V. L., and Crapo, J. D. (2003). Superoxide dismutases in the lung and human lung diseases. American journal of respiratory and critical care medicine, 167 (12): 1600-1619.
Li, Y., Ding, H. Y., Wang, X. C., Feng, S. B., Li, X. B., Wang, Z., et al. (2016). An association between the level of oxidative stress and the concentrations of NEFA and BHBA in the plasma of ketotic dairy cows. Journal of animal physiology and animal nutrition, 100 (5): 844-851.
Marnett, L. J. (1999). Lipid peroxidation-DNA damage by malondialdehyde. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 424 (1-2): 83-95.
Mellado, M., García, J. E., Véliz Deras, F. G., de Santiago, M. D. L. Á., Mellado, J., Gaytán, L. R., and Ángel-García, O. (2018). The effects of periparturient events, mastitis, lameness and ketosis on reproductive performance of Holstein cows in a hot environment. Austral journal of veterinary sciences, 50 (1): 1-8.
Oikonomou, G., Arsenos, G., Valergakis, G. E., Tsiaras, A., Zygoyiannis, D., and Banos, G. (2008). Genetic relationship of body energy and blood metabolites with reproduction in Holstein cows. Journal of Dairy Science, 91 (11): 4323-4332.
Padilla, L., Shibano, K.I., Inoue, J., Matsui, T. and Yano, H. (2005). Plasma vitamin C concentration is not related to the incidence of ketosis in dairy cows during the early lactation period. Journal of veterinary medical science, 67(9): 883-886.
Pedernera, M., Celi, P., García, S. C., Salvin, H. E., Barchia, I., and Fulkerson, W. J. (2010). Effect of diet, energy balance and milk production on oxidative stress in early-lactating dairy cows grazing pasture. The Veterinary Journal, 186 (3): 352-357.
Radostits, O. and Blood Henderson, J. A. (2000). Veterinary Medicine. 9th ed. Baillertindall, Philadelphia, 1452-1462.
Radostits, O.M., Gay, C., Hinchcliff, K.W. and Constable, P.D. (2007). A textbook of the diseases of cattle, sheep, goats, pigs and horses. Veterinary Medicine 10th edition Bailliere, Tindall, London, UK, 1576-80.
Reist, M., Erdin, D. K., von Euw, D., Tschümperlin, K. M., Leuenberger, H., Hammon, H. M. et al. (2003). Postpartum reproductive function: association with energy, metabolic and endocrine status in high yielding dairy cows. Theriogenology, 59 (8): 1707-1723.
Roche, J. F. (2006). The effect of nutritional management of the dairy cow on reproductive efficiency. Animal reproduction science, 96 (3-4): 282-296.
Rook, J.S. (2000). Pregnancy toxemia of ewes, does, and beef cows. Veterinary Clinics of North America: Food Animal Practice, 16 (2): 293-317.
Sahoo, S. S., Patra, R. C., Behera, P. C., and Swarup, D. (2009). Oxidative stress indices in the erythrocytes from lactating cows after treatment for subclinical ketosis with antioxidant incorporated in the therapeutic regime. Veterinary research communications, 33 (3): 281-290.
Shen, X. P., Zou, S. B., Wu, H. J., and Zhang, Y. (2009). The relationship between serum level of leptin and oxidative stress in patients with hyperglycemia crisis. Zhongguo wei zhong bing ji jiu yi xue= Chinese critical care medicine= Zhongguo weizhongbing jijiuyixue, 21 (6): 353-356.
Sun, Y.I., Oberley, L.W. and Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical chemistry, 34 (3):.497-500.
Valko, M., Rhodes, C., Moncol, J., Izakovic, M. M., and Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological interactions, 160 (1): 1-40.
Walsh, R. B., Walton, J. S., Kelton, D. F., LeBlanc, S. J., Leslie, K. E., and Duffield, T. F. (2007). The effect of subclinical ketosis in early lactation on reproductive performance of postpartum dairy cows. Journal of dairy science, 90 (6): 2788-2796.
Whitaker, D.A., Smith, E.J. and Kelly, J.M. (1993). Some effects of nutrition and management on the fertility of dairy cattle. The Veterinary Record, 133(3): 61-64.
Youssef, M. A., El-Khodery, S. A., El-deeb, W. M., and El-Amaiem, W. E. A. (2010). Ketosis in buffalo (Bubalus bubalis): clinical findings and the associated oxidative stress level. Tropical animal health and production, 42 (8): 1771-1777.
Zelko, I. N., Mariani, T. J., and Folz, R. J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine, 33 (3): 337-349.