Combined effect of filtration method (carbon, zeolite and simple filtration) and stock density of Macro (Labidochromis caeruleus) on growth and nitrogenous compounds of water

Document Type : Research Paper

Authors

1 DVM Graduated from Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

Water physicochemical factors have an important role in the health of fish. In this study, the effect of filtration and density of Macro fish on water nitrogenous compounds was studied. For this purpose, the concentrations of water biochemical parameters (ammonia, nitrite, nitrate and pH) were measured at three densities and three filtration methods (carbon filteration, zeolite filteration, and control, simple filteration). Water samples collected in a period of one month and three days intervals and were immediately investigated. Data were compared using two-way ANOVA. The results showed that the average concentration of nitrate in the three types of filter in three densities had no significant difference. The average concentration of nitrate in comparison with filtration, between filtration of the zeolite group and control group was significantly different. Also, between filtration of the carbon group and control group was significantly different. In this regard, there was no significant difference between filtration of the carbon group and filtration of the zeolite group. The results showed that the average of pH level in the three types of filter in three densities had no significant difference. In comparison between the averages of pH level with filtration, between filtration of the zeolite group and control group and filtration of the carbon group and control group had significant difference. But there was no significant difference between filtration of the zeolite group and filtration of the carbon group. The counter effect of filtration and density, a significant relationship was not found and no difference in the average of other factors was observed in other groups.

Keywords

Main Subjects


براهیم­­زاده­موسوی، حسین­علی؛ ذبیحی­محمودآبادی، علی؛ قره­باغی، عادل و منصوری­دانشور، مهدی (1388). بیماری­های ماهی­های زینتی، انتشارات علمی آبزیان، تهران، چاپ اول، صفحات 197-210.
رحمانی، علیرضا و احسانی، حمیدرضا (1384). بررسی حذف آمونیوم موجود در پساب خروجی سیستم­های مدار بسته پرورش ماهی با استفاده از فرآیندهای تبادل یون و ایر استریپینگ، مجله علمی شیلات ایران، شماره 15 (2)، صفحات 27-19.
شکوه­سلجوقی، ظهیر؛ رفیعی، غلامرضا؛ ملک­پور، اکبر؛ بختیاری، مجید؛ ایمانی، احمد (1389). بررسی مقایسه­ای عملکرد زئولیت اصلاح شده و رزین آمبرلایت در جذب آنیون­های نیتروژنی از سیستم مدار بسته آبزی­پروری، مجله منابع طبیعی ایران، شماره 63 (3)، صفحات 195-183.
علیشاهی، مجتبی و پیغان، رحیم (1389). بیماری­های ماهی کپور و سایر کپور ماهیان، تألیف: د. هول- دی. بوک- پ. بارگس- ا. ولبی، انتشارات دانشگاه شهید چمران اهواز، چاپ اول، صفحات 263-289.
فرهنگی، محمد؛ کمالی، ابوالقاسم و حاجی مرادلو، عبدالمجید (1382).  بررسی نقش زئولیت طبیعی در کاهش مسمومیت با آمونیاک در قزل­آلای رنگین کمان، مجله علوم کشاورزی و منابع طبیعی، شماره 2، دوره 38، صفحات 195-207.
Bailey, M. and Sandford, G. (2002). The Ultimate Aquarium, A Definitive Guide to Identifying and Keeping Freshwater and Marine Fishes, Lorenz books, Pp: 54-87.
Batterson, T.R. and Knud-Hansen, C.F. (2002). Use of clinoptilolite zeolites for Ammonia-N transfer and retention in integrated aquaculture system and for improving pond water quality before discharge. Appropriate Technology Research, 5, Pp: 217-226.
Bergero, D.; Boccignone, M. and Palmegiano, G.B. (1994). Ammonia removal capacity of European natural zeolite tuffs: Application to aquaculture waste water, Aquaculture Research 25(8): 813-820.
Bower, C.E. and Turner, D.T. (1981). Accelerated nitrification in new seawater culture systems: effectiveness of commercial additives and seed media established systems. Aquaculture, 24: 1-9.
Chiayvareesajja, S. and Boyd, C.E. (1993). Effects of zeolite, formalin, bacterial augmentation, and aeration on total ammonia nitrogen concentrations. Aquaculture, 116 (1): 33-45.
Clifford, E.; Nielsen, M.; Sorensen, K. and Rodgers, M. (2010). Nitrogen dynamics and removal in a horizontal flow biofilm reactor for wastewater treatment, Water Research, 44 (13): 3819-3828.
Emadi, H.; Nezhad, J.E. and Pourbagher, H. (2001). In vitro Comparison of Zeolite (Clinoptilolite) and Activated Carbon as Ammonia Absorbants in Fish Culture, The ICLARM Quarterly, 24 (1-2): 18-20.
Eshchar, M.; Lahav, O.; Mozes, N.; Peduel, A. and Ron, B. (2006). Intensive fish culture at high ammonium and low pH, Aquaculture, 255: 301-313.
Frances, J.; Nowak, B.F. and Allan, G.L. (1999). Effects of ammonia on juvenile silver perch (Bidyanus bidyanus), Aquaculture, 183(1): 95-103.
Foo, K.Y. and Hameed, B.H. (2011). The environmental applications of activated carbon/zeolite composite materials, Advances in Colloid and Interface Science, 162 (1-2): 22-28.
Gomez, M.A.; Gonzales-Lopez, J. and Hontoria-Garcia, E. (2000). Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter, Journal of Hazardous Materials, 80(1-3): 69-80.
Gottardi, G. and Galli, E. (1985). Natural Zeolite, 2nd ed, Springer, berlin, Pp: 409.
Grommen, R.; Van Hauteghem, I.; Van Wambeke, M. and Verstraete, W. (2001). An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems, Aquaculture, 211(1-4): 115-124.
Kayabali, K. and Kezer, H. (1998). Testing the ability of bentonite amended natural zeolite (clinoptilolite) to remove heavy metals from liquid waste, Journal of Environmental Geology, 34: 95-100.
Keith, F. (1981). The Encyclopedia of mineralogy, 2nd ed. Hatchincon Ross is Publishing Company, Pensylvania, Chapter (10), Pp: 523-530.
Kiussis, D.R.; Wheaton, F. and Koffinas, P. (2000). Reactive nitrogen and phosphorus removal from aquacultue waste water effluents using polymer hydrogels, Aquaculture Engineering, 23: 315-332.
Koffinas, P. and Kiussis, D.R. (2003). Reactive phosphorus removal from Aquaculture and Poultry productions systems using polymeric hydrogels, Environmental Science and Technology, 37: 423-427.
Lawson, T.B. (1994). Fundamentals of Aquacultural Engineering, Chapman and Hall, Georgia, Pp: 165-330.
Lee, Y.C.; Fang, B.H. and Hwang, C.M. (1988). Adsorptive capacity of natural zeolite for pathogenic bacteria of fish, Journal of the Chinese Society of Veterinary Sciences, 14: 1-5.
Li, M.; Zhu, X.; Zhu, F.; Ren, G.; Cao, G. and Song, L. (2010) . Application of modified zeolite for ammonium removal from drinking water, Desalination, 271(1-3): 295-300.
Matilainen, A.; Vieno, N. and Tuhkanen, T. (2006). Efficiency of the activated carbon filtration in the natural organic matter removal, Environment International, 32 (3): 324-331.
McLaren, J.R. and Farquhar, G.J. (1973). Factors affecting ammonia removal by clinoptilolite, Journal of Environmental Engineering, 99(4): 429-446.
Midlen, A.B. and Redding, T.A. (1998). Environmental Management for Aquaculture, Kluwer Academic Pub., Denmark, Pp: 26-58.
Mumpton, F.A. and Fishman, P.H. (1977). The application of natural zeolite in animal science and aquaculture, Journal of Animal Science, 45: 1188-1203.
Sprynskyy, M.; Lebedynets, M.; Terzyk, AP.; Kowalczyk, P.; Namiesnik, J. and Buszewski, B. (2005). Ammonium sorption from aqueous solutions by the natural zeolite Transcarpathian clinoptilolite studied under dynamic conditions, Journal of Colloid and Interface Science, 284(2): 408-415.
Wickins, J.F. (1983). Studies on marine biological filters: Model filters, Water Research, 17(12): 1769-1780.