The comparison of somatic cell count and infection with Streptococcus uberis in dairy farms tank milk samples in Isfahan province

Document Type : Research Paper

Authors

1 PhD Student of Bacteriology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran

2 Professor, Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran

3 Associate Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran

10.22055/ivj.2022.350219.2478

Abstract

    Streptococcus uberis is a Gram-positive bacterium and the major cause of mastitis in dairy cattle. This bacterium is one of the most important causes of economic losses in dairy herds with no ordinary monitoring program for mastitis. In order to evaluate the presence of this agent in the bulk tank milk of dairy cattle farms in Isfahan province and to find out its relationship with the total bacterial and somatic cells count, 100 tank milk samples were collected. The total bacterial and somatic cells were detected in the samples and the level of infection to S. uberis was evaluated by conventional culture and RT-PCR methods. The results of RT-PCR and culture showed infectivity of 20 and 16 samples to S. uberis, respectively. All culture positive samples were also positive in RT-PCR, but 6 samples were only positive in RT-PCR, indicating that RT-PCR is more sensitive than culture. Statistical analysis showed that there is a significant relationship between the infectivity to S. uberis and the total somatic cells, but the presence of this bacterium had no significant effect on the total number of bacteria in milk samples. It can be concluded that S. uberis is usually present in dairy farms of Isfahan province and it is necessary to pay more attention to the methods of monitoring and controlling the mastitis cows.

Keywords

Main Subjects


Bexiga, R., Koskinen, M. T., Holopainen, J., Carneiro, C., Pereira, H., Ellis, K. A., et al. (2011). Diagnosis of intramammary infection in samples yielding negative results or minor pathogens in conventional bacterial culturing. Journal of Dairy Research, 78(1), 49-55.
Bi, Y., Wang, Y. J., Qin, Y., Guix Vallverdu, R., Maldonado Garcia, J., Sun, W., et al. (2016). Prevalence of bovine mastitis pathogens in bulk tank milk in China. PLoS One, 11(5), e0155621.
Bradley, A., Leach, K., Breen, J., Green, L., & Green, M. (2007). Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Veterinary Record, 160(8), 253-258.
Constable, P., Pyörälä, S., & Smith, G. (2008). Guidelines for antimicrobial use in cattle. Guide to Antimicrobial Use in Animals. L. Guardabassi, LB Jensen, and H. Kruse, ed. Blackwell Publishing Ltd., Oxford, UK, 143-160.
De Vliegher, S., Fox, L. K., Piepers, S., McDougall, S., & Barkema, H. W. (2012). Invited review: Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and control. Journal of Dairy Science, 95(3), 1025-1040.
Erskine, R., Eberhart, R., Hutchinson, L., & Spencer, S. (1987). Herd management and prevalence of mastitis in dairy herds with high and low somatic cell counts. Journal of the American Veterinary Medical Association, 190(11), 1411-1416.
Esener, N., Green, M. J., Emes, R. D., Jowett, B., Davies, P. L., Bradley, A. J., et al. (2018). Discrimination of contagious and environmental strains of Streptococcus uberis in dairy herds by means of mass spectrometry and machine-learning. Scientific Reports, 8(1), 17517.
Fenske, L., Noll, I., Blom, J., Ewers, C., Semmler, T., Fawzy, A., et al. (2022). A dominant clonal lineage of Streptococcus uberis in cattle in Germany. Antonie Van Leeuwenhoek.
Gillespie, B., & Oliver, S. (2005). Simultaneous detection of mastitis pathogens, Staphylococcus aureus, Streptococcus uberis, and Streptococcus agalactiae by multiplex real-time polymerase chain reaction. Journal of Dairy Science, 88(10), 3510-3518.
Goncalves, J. L., Cue, R. I., Botaro, B. G., Horst, J. A., Valloto, A. A., & Santos, M. V. (2018). Milk losses associated with somatic cell counts by parity and stage of lactation. Journal of Dairy Science, 101(5), 4357-4366.
Jayarao, B. M., & Wolfgang, D. R. (2003). Bulk-tank milk analysis. A useful tool for improving milk quality and herd udder health. The Veterinary Clinics of North America. Food Animal Practice, 19(1), 75-92, vi.
Katholm, J., Bennedsgaard, T. W., Koskinen, M. T., & Rattenborg, E. (2012). Quality of bulk tank milk samples from Danish dairy herds based on real-time polymerase chain reaction identification of mastitis pathogens. Journal of Dairy Science, 95(10), 5702-5708.
Keefe, G. P. (1997). Streptococcus agalactiae mastitis: a review. The Canadian Veterinary Journal, 38(7), 429.
Koivula, M., Pitkälä, A., Pyörälä, S., & Mäntysaari, E. A. (2007). Distribution of bacteria and seasonal and regional effects in a new database for mastitis pathogens in Finland. Acta Agriculturae Scand Section A, 57(2), 89-96.
Koskinen, M., Wellenberg, G., Sampimon, O., Holopainen, J., Rothkamp, A., Salmikivi, L., et al. (2010). Field comparison of real-time polymerase chain reaction and bacterial culture for identification of bovine mastitis bacteria. Journal of Dairy Science, 93(12), 5707-5715.
Koskinen, M. T., Holopainen, J., Pyorala, S., Bredbacka, P., Pitkala, A., Barkema, H. W., et al. (2009). Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens. Journal of Dairy Science, 92(3), 952-959.
Kumar, N., Manimaran, A., Kumaresan, A., Jeyakumar, S., Sreela, L., Mooventhan, P., et al. (2017). Mastitis effects on reproductive performance in dairy cattle: a review. Tropical Animal Health and Production, 49(4), 663-673.
Makovec, J. A., & Ruegg, P. L. (2003). Results of milk samples submitted for microbiological examination in Wisconsin from 1994 to 2001. Journal of Dairy Science, 86(11), 3466-3472.
Naing, Y. W., Wai, S. S., Lin, T. N., Thu, W. P., Htun, L. L., Bawm, S., et al. (2019). Bacterial content and associated risk factors influencing the quality of bulk tank milk collected from dairy cattle farms in Mandalay Region. Food Science & Nutrition, 7(3), 1063-1071.
Phuektes, P., Browning, G. F., Anderson, G., & Mansell, P. D. (2003). Multiplex polymerase chain reaction as a mastitis screening test for Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus uberis in bulk milk samples. Journal of Dairy Research, 70(2), 149-155.
Phuektes, P., Mansell, P., & Browning, G. (2001). Multiplex polymerase chain reaction assay for simultaneous detection of Staphylococcus aureus and streptococcal causes of bovine mastitis. Journal of Dairy Science, 84(5), 1140-1148.
Pulina, G., Francesconi, A. H. D., Stefanon, B., Sevi, A., Calamari, L., Lacetera, N., et al. (2017). Sustainable ruminant production to help feed the planet. Italian Journal of Animal Science, 16(1), 140-171.
Reinoso EB (2017) Bovine mastitis caused By Streptococcus uberis: Virulence factors and biofilm. J Microb Biochem Technol 9:237-243.
Riekerink, R. O., Barkema, H., Kelton, D., & Scholl, D. (2008). Incidence rate of clinical mastitis on Canadian dairy farms. Journal of Dairy Science, 91(4), 1366-1377.
Riekerink, R. O., Barkema, H., & Stryhn, H. (2007). The effect of season on somatic cell count and the incidence of clinical mastitis. Journal of Dairy Science, 90(4), 1704-1715.
Ruegg, P. L. (2012). New perspectives in udder health management. Veterinary Clinics: Food Animal Practice, 28(2), 149-163.
Rysanek, D., Zouharova, M., & Babak, V. (2009). Monitoring major mastitis pathogens at the population level based on examination of bulk tank milk samples. Journal of Dairy Research, 76(1), 117-123.
Ryšánek, D., Zouharová, M., & Babák, V. (2009). Major mammary pathogens as contributors to total bacterial counts in raw milk. Acta Veterinaria Brno, 78(3), 455-461.
Sears, P. M., Smith, B. S., English, P. B., Herer, P. S., & Gonzalez, R. N. (1990). Shedding pattern of Staphylococcus aureus from bovine intramammary infections. Journal of Dairy Science., 73(10), 2785-2789.
Sharma, N., Singh, N., & Bhadwal, M. (2011). Relationship of somatic cell count and mastitis: An overview. Asian-Australasian Journal of Animal Sciences, 24(3), 429-438.
Soltau, J., Einax, E., Klengel, K., Katholm, J., Failing, K., Wehrend, A., et al. (2017). Within-herd prevalence thresholds for herd-level detection of mastitis pathogens using multiplex real-time PCR in bulk tank milk samples. Journal of Dairy Science, 100(10), 8287-8295.
Summer, A., Franceschi, P., Formaggioni, P., & Malacarne, M. (2015). Influence of milk somatic cell content on Parmigiano-Reggiano cheese yield. Journal of Dairy Research, 82(2), 222-227.
Svennesen, L., Mahmmod, Y. S., Skjolstrup, N. K., Mathiasen, L. R., Katholm, J., Pedersen, K., et al. (2018). Accuracy of qPCR and bacterial culture for the diagnosis of bovine intramammary infections and teat skin colonisation with Streptococcus agalactiae and Staphylococcus aureus using Bayesian analysis. Preventive Veterinary Medicine, 161, 69-74.
Taponen, S., Salmikivi, L., Simojoki, H., Koskinen, M., & Pyörälä, S. (2009). Real-time polymerase chain reaction-based identification of bacteria in milk samples from bovine clinical mastitis with no growth in conventional culturing. Journal of Dairy Science, 92(6), 2610-2617.
Verbeke, J., Piepers, S., Supré, K., & De Vliegher, S. (2014). Pathogen-specific incidence rate of clinical mastitis in Flemish dairy herds, severity, and association with herd hygiene. Journal of Dairy Science, 97(11), 6926-6934.
Ward, P. N., Holden, M. T., Leigh, J. A., Lennard, N., Bignell, A., Barron, A., et al. (2009). Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis. BMC Genomics, 10(1), 1-17.
Zadoks, R., Gonzalez, R., Boor, K., & Schukken, Y. (2004). Mastitis-causing streptococci are important contributors to bacterial counts in raw bulk tank milk. Journal of Food Protection, 67(12), 2644-2650.