Antibiotic resistance phenotypes and genes of Escherichia coli isolates from rainbow trout (Oncorhynchus mykiss) sold in retail settings in Kerman, Iran

Document Type : Research Paper

Authors

1 PhD Student of Bacteriology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran

2 Professor, Department of Molecular Microbiology Research, Shahid Bahonar University of Kerman, Kerman, Iran

3 Assistant Professor, Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran

4 Assistant Professor, Department of Food Sciences and Technology, Bardsir Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

    Antibiotics are widely used to treat infectious diseases in humans and animals. However, the indiscriminate use of antibiotics contributes to the emergence of antibiotic-resistant bacteria, making infections more difficult to treat. In this study, we randomly collected thirty-six rainbow trout fish from various retail stores in Kerman city, located in the southeast of Iran. Skin samples were obtained from each fish using a swab, and Escherichia coli (E. coli) isolates were identified and screened for antimicrobial resistance (AMR) phenotypes, as well as related genes, using microbiological culturing, disc diffusion, and conventional PCR methods. Our findings showed that the prevalence of phenotypic resistance against the tested antibiotics was high, with erythromycin (88.57%), florfenicol (77.14%), oxytetracycline (74.28%), trimethoprim-sulphamethoxazole (71.42%), trimethoprim (65.71%), chloramphenicol (62.85%), flumequine (60%), ciprofloxacin (54.28%), and tetracycline (54.28%) having the highest resistance rates. Moreover, 8.57% of the E. coli isolates were found to be ESBL-producing strains, and 74.28% of the isolates were multi-drug resistant (MDR). The highest frequencies of antibiotic resistance genes were 5.71 % for blaTEM, 14.28% for qnrA, 17.14% for sul1, and 20% for sul2. E. coli is a mesophilic bacteria and is not naturally present in fish. Fishes have mostly psychrophilic bacteria in their microflora. The origin of E. coli on the skin of fish is water contaminated with human and animal feces, so the antibiotic resistance of this bacterium has an indirect relationship with aquaculture. Our study showed that E. coli isolates from the skin of rainbow trout has a high level of antibiotic resistance, which may be a risk to public health. Therefore, it is very important to control the use of antibiotics in fish farming to reduce the selection pressure to emergence and spread of antibiotic-resistant bacteria.

Keywords

Main Subjects


Abdel-Latif, H. M. R., & Sedeek, E. K. (2017). Diversity of Enterobacteriaceae retrieved from diseased cultured Oreochromis niloticus. International Journal of Fisheries and Aquatic Studies, 5(1), 29–34.
Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 169, 483–493.
Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., & Pons, M.-N. (2015). Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 13(5), 310–317.
Blaak, H., van Hoek, A. H. A. M., Veenman, C., van Leeuwen, A. E. D., Lynch, G., van Overbeek, W. M., & de Roda Husman, A. M. (2014). Extended spectrum ß-lactamase-and constitutively AmpC-producing Enterobacteriaceae on fresh produce and in the agricultural environment. International Journal of Food Microbiology, 168, 8–16.
Brahmi, S., Touati, A., Dunyach-Remy, C., Sotto, A., Pantel, A., & Lavigne, J.-P. (2018). High prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in wild fish from the Mediterranean Sea in Algeria. Microbial Drug Resistance, 24(3), 290–298.
Bréchet, C., Plantin, J., Sauget, M., Thouverez, M., Talon, D., Cholley, P., Guyeux, C., Hocquet, D., & Bertrand, X. (2014). Wastewater treatment plants release large amounts of extended-spectrum β-lactamase–producing Escherichia coli into the environment. Clinical Infectious Diseases, 58(12), 1658–1665.
Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., & Buschmann, A. H. (2013). Antimicrobial use in aquaculture re‐examined: its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15(7), 1917–1942.
Cardozo, M. V., Borges, C. A., Beraldo, L. G., Maluta, R. P., Pollo, A. S., Borzi, M. M., dos Santos, L. F., Kariyawasam, S., & Ávila, F. A. de. (2018). Shigatoxigenic and atypical enteropathogenic Escherichia coli in fish for human consumption. Brazilian Journal of Microbiology, 49(4), 936–941.
Cattoir, V., Poirel, L., Rotimi, V., Soussy, C., & Nordmann, P. (2007). Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. 60(2), 394–397. h
Chigor, V., Ibangha, I.-A., Chigor, C., & Titilawo, Y. (2020). Treated wastewater used in fresh produce irrigation in Nsukka, Southeast Nigeria is a reservoir of enterotoxigenic and multidrug-resistant Escherichia coli. Heliyon, 6(4), e03780.
CLSI. (2021). Performance Standards for Antimicrobial Susceptibility Testing (CLSI supplement M100) (31st ed.). Clinical and Laboratory Standards Institute.
Colom, K., Pérez, J., Alonso, R., Fernández-Aranguiz, A., Lariño, E., & Cisterna, R. (2003). Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA–1 genes in Enterobacteriaceae. FEMS Microbiology Letters, 223(2), 147–151.
Done, H. Y., Venkatesan, A. K., & Halden, R. U. (2015). Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? The AAPS Journal, 17(3), 513–524.
Durão, P., Balbontín, R., & Gordo, I. (2018). Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends in Microbiology, 26(8), 677–691.
Ellis-Iversen, J., Seyfarth, A. M., Korsgaard, H., Bortolaia, V., Munck, N., & Dalsgaard, A. (2020). Antimicrobial resistant E. coli and enterococci in pangasius fillets and prawns in Danish retail imported from Asia. Food Control, 114, 106958.
Fang, H., Huang, K., Yu, J., Ding, C., Wang, Z., Zhao, C., Yuan, H., Wang, Z., Wang, S., & Hu, J. (2019). Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment. Chemosphere, 224, 202–211.
Franz, E., Veenman, C., van Hoek, A. H. A. M., Husman, A. de R., & Blaak, H. (2015). Pathogenic Escherichia coli producing extended-spectrum β-lactamases isolated from surface water and wastewater. Sci Rep, 5(1), 1–9.
Furushita, M., Shiba, T., Maeda, T., Yahata, M., Kaneoka, A., Takahashi, Y., Torii, K., Hasegawa, T., & Ohta, M. (2003). Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Applied and Environmental Microbiology, 69(9), 5336–5342.
Gajic, I., Kabic, J., Kekic, D., Jovicevic, M., Milenkovic, M., Mitic Culafic, D., Trudic, A., Ranin, L., & Opavski, N. (2022). Antimicrobial susceptibility testing: A comprehensive review of currently used methods. Antibiotics, 11(4), 427.
Heuer, O. E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I., & Angulo, F. J. (2009). Human health consequences of use of antimicrobial agents in aquaculture. Clinical Infectious Diseases, 49(8), 1248–1253.
Huang, L., Xu, Y.-B., Xu, J.-X., Ling, J.-Y., Chen, J.-L., Zhou, J.-L., Zheng, L., & Du, Q.-P. (2017). Antibiotic resistance genes (ARGs) in duck and fish production ponds with integrated or non-integrated mode. Chemosphere, 168, 1107–1114.
Ishida, Y., Ahmed, A. M., Mahfouz, N. B., Kimura, T., El-Khodery, S. A., Moawad, A. A., & Shimamoto, T. (2010). Molecular analysis of antimicrobial resistance in Gram-negative bacteria isolated from fish farms in Egypt. Journal of Veterinary Medical Science, 72(6), 727–734.
Jajarmi, M., Asadabadi Safat, A., Sakhaee, E., & Ghanbarpour, R. (2021). Study of the presence of blaTEM, blaSHV and blaCTX-M genes in Escherichia coli strains isolated from sheep in Kerman province. Iranian Veterinary Journal, 16(4), 16–23.
Jara, B., Tucca, F., Srain, B. M., Mejanelle, L., Aranda, M., Fernández, C., & Pantoja-Gutiérrez, S. (2021). Antibiotics florfenicol and flumequine in the water column and sediments of Puyuhuapi Fjord, Chilean Patagonia. Chemosphere, 275, 130029.
Jian, Z., Zeng, L., Xu, T., Sun, S., Yan, S., Yang, L., Huang, Y., Jia, J., & Dou, T. (2021). Antibiotic resistance genes in bacteria: Occurrence, spread, and control. Journal of Basic Microbiology, 61(12), 1049–1070.
Kerrn, M. B., Klemmensen, T., Frimodt-Möller, N., & Espersen, F. (2002). Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. Journal of Antimicrobial Chemotherapy, 50(4), 513–516.
Kumar, H. S., Parvathi, A., Karunasagar, I., & Karunasagar, I. (2005). Prevalence and antibiotic resistance of Escherichia coli in tropical seafood. World Journal of Microbiology and Biotechnology, 21(5), 619–623.
Liao, C.-Y., Balasubramanian, B., Peng, J.-J., Tao, S.-R., Liu, W.-C., & Ma, Y. (2021). Antimicrobial resistance of Escherichia coli from aquaculture farms and their environment in Zhanjiang, China. Frontiers in Veterinary Science, 8, 1534.
Lima, L. S., Proietti-Junior, A. A., Rodrigues, Y. C., da Silva Vieira, M. C., Lima, L. N. G. C., de Oliveira Souza, C., Dias Gonçalves, V., de Oliveira Lima, M., dos Prazeres Rodrigues, D., & Lima, K. V. B. (2022). High Genetic Diversity and Antimicrobial Resistance in Escherichia col i Highlight Arapaima gigas (Pisces: Arapaimidae) as a Reservoir of Quinolone-Resistant Strains in Brazilian Amazon Rivers. Microorganisms, 10(4), 808.
MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8(6), 510–514.
Markey, B., Leonard, F., Archambault, M., Cullinane, A., & Maguire, D. (2013). Clinical Veterinary Microbiology E-Book. Elsevier Health Sciences.
Messai, Y., Benhassine, T., Naim, M., Paul, G., & Bakour, R. (2006). Prevalence of beta-lactams resistance among Escherichia coli clinical isolates from  a hospital in Algiers. Revista Espanola de Quimioterapia : Publicacion Oficial de La Sociedad Espanola de  Quimioterapia, 19(2), 144–151.
Miranda, C. D., & Zemelman, R. (2001). Antibiotic Resistant Bacteria in Fish from the Concepción Bay, Chile. Marine Pollution Bulletin, 42(11), 1096–1102.
Moremi, N., Manda, E. V, Falgenhauer, L., Ghosh, H., Imirzalioglu, C., Matee, M., Chakraborty, T., & Mshana, S. E. (2016). Predominance of CTX-M-15 among ESBL Producers from Environment and Fish Gut from the Shores of Lake Victoria in Mwanza, Tanzania. Frontiers in Microbiology, 7.
Naik, O. A., Shashidhar, R., Rath, D., Bandekar, J. R., & Rath, A. (2018). Characterization of multiple antibiotic resistance of culturable microorganisms and metagenomic analysis of total microbial diversity of marine fish sold in retail shops in Mumbai, India. Environmental Science and Pollution Research, 25(7), 6228–6239.
Ng, K. H., Samuel, L., Kathleen, M. M., Leong, S. S., & Felecia, C. (2014). Distribution and prevalence of chloramphenicol-resistance gene in Escherichia coli isolated from aquaculture and other environment. International Food Research Journal, 21(4), 1321.
Odumosu, B. T., Obeten, H. I., & Bamidele, T. A. (2021). Incidence of Multidrug-Resistant Escherichia coli Harbouring blaTEM and tetA Genes Isolated from Seafoods in Lagos Nigeria. Current Microbiology, 78(6), 2414–2419.
Onmaz, N. E., Yildirim, Y., Karadal, F., Hizlisoy, H., Al, S., Gungor, C., Disli, H. B., Barel, M., Dishan, A., & Tegin, R. A. A. (2020). Escherichia coli O157 in fish: Prevalence, antimicrobial resistance, biofilm formation capacity, and molecular characterization. LWT, 133, 109940.
Ozaktas, T., Taskin, B., & Gozen, A. G. (2012). High level multiple antibiotic resistance among fish surface associated bacterial populations in non-aquaculture freshwater environment. Water Research, 46(19), 6382–6390.
Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501.
Ryu, S.-H., Park, S.-G., Choi, S.-M., Hwang, Y.-O., Ham, H.-J., Kim, S.-U., Lee, Y.-K., Kim, M.-S., Park, G.-Y., Kim, K.-S., & Chae, Y.-Z. (2012). Antimicrobial resistance and resistance genes in Escherichia coli strains isolated  from commercial fish and seafood. International Journal of Food Microbiology, 152(1–2), 14–18.
Saharan, V. V., Verma, P., & Singh, A. P. (2020). High prevalence of antimicrobial resistance in Escherichia coli, Salmonella spp. and Staphylococcus aureus isolated from fish samples in India. Aquaculture Research, 51(3), 1200–1210.
Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in aquaculture. Scientific Reports, 10(1), 21878.
Shah, S. Q. A., Colquhoun, D. J., Nikuli, H. L., & Sørum, H. (2012). Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. Environmental Science & Technology, 46(16), 8672–8679.
Sharma, J., Sharma, M., & Ray, P. (2010). Detection of TEM & SHV genes in Escherichia coli & Klebsiella pneumoniae isolates in a tertiary care hospital from India. Indian Journal of Medical Research, 132(3), 332–337.
Singh, A. S., Nayak, B. B., & Kumar, S. H. (2020). High prevalence of multiple antibiotic-resistant, extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in fresh seafood sold in retail markets of Mumbai, India. Veterinary Sciences, 7(2), 46.
Smith, P. (2008). Antimicrobial resistance in aquaculture. Revue Scientifique et Technique (International Office of Epizootics), 27(1), 243–264.
SSSdS, J., TG, W., Arulkanthan, A., Igarashi, Y., Tan, E., Kinoshita, S., Watabe, S., & Asakawa, S. (2014). Characterization and antimicrobial susceptibility of motile aeromonads isolated from freshwater ornamental fish showing signs of septicaemia . Diseases of Aquatic Organisms, 109(2), 127–137.
Ơneill, J. (2016). The Review on Antimicrobial Resistance, cited in: Tackling drug-resistant infections globally: final report and recommendations. (2016). Government of the United Kingdom  .
Thornber, K., Verner‐Jeffreys, D., Hinchliffe, S., Rahman, M. M., Bass, D., & Tyler, C. R. (2020). Evaluating antimicrobial resistance in the global shrimp industry. Reviews in Aquaculture, 12(2), 966–986.
Tiralongo, F., Messina, G., Lombardo, B. M., Longhitano, L., Li Volti, G., & Tibullo, D. (2020). Skin mucus of marine fish as a source for the development of antimicrobial agents. Frontiers in Marine Science, 760.
Vickers, N. J. (2017). Animal communication: when i’m calling you, will you answer too? Current Biology, 27(14), R713–R715.
Wendlandt, S., Shen, J., Kadlec, K., Wang, Y., Li, B., Zhang, W.-J., Feßler, A. T., Wu, C., & Schwarz, S. (2015). Multidrug resistance genes in staphylococci from animals that confer resistance to critically and highly important antimicrobial agents in human medicine. Trends in Microbiology, 23(1), 44–54.
Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., Zhang, Y., Li, X., & Meng, W. (2015). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119, 1379–1385.
Young, K. M., Isada, M. J., Reist, M., Uhland, F. C., Sherk, L. M., & Carson, C. A. (2022). A Scoping Review of the Distribution and Frequency of Extended-Spectrum β-lactamase (ESBL)-Producing Enterobacteriaceae in Shrimp and Salmon. Epidemiology & Infection, 1–36.
Zhang, R., Zhang, R., Yu, K., Wang, Y., Huang, X., Pei, J., Wei, C., Pan, Z., Qin, Z., & Zhang, G. (2018). Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth. Environmental Pollution, 232, 450–457.
Zhou, L.-J., Ying, G.-G., Liu, S., Zhang, R.-Q., Lai, H.-J., Chen, Z.-F., & Pan, C.-G. (2013). Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Science of the Total Environment, 444, 183–195.