Effect of chronic toxicity of silver nitrate on biomarkers of oxidative stress of whiteleg shrimp (Litopenaeus vannamei) hepatopancreas

Document Type : Research Paper

Authors

1 MSc Graduated of Aquatic Breeding, Fisheries department, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran

2 Assistance Professor of Fisheries Department, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran

Abstract

    The aim of this study was to investigate the effects of sublethal concentrations of silver nitrate on changes in biomarkers of oxidative stress (superoxide dismutase, catalase, glutathione, total antioxidant capacity and malondialdehyde), in the hepatopancreas of white leg shrimp (Litopenaeus vannamei). For this purpose, whiteleg shrimp (Litopenaeus vannamei) post larvae shrimp were exposed to sublethal silver nitrate concentrations (equivalent to 10 % (treatment 1), 25 % (treatment 2), 50 % (treatment 3) and 75 % (treatment 4) LC50 AgNO3) for 21 days. Catalase, glutathione and total antioxidant capacity in treatments 3 and 4 compared to control treatment had a significant decrease while malondialdehyde increased significantly. Also, superoxide dismutase activity in both treatments 3 and 4, total antioxidant capacity decreased significantly only in treatment 4 compared to the control group, but malondialdehyde activity in treatment 4 increased significantly. The results of this study showed that exposure to concentrations of 0.042 and 0.063 mg/L of silver nitrate caused oxidative damage to hepatopancreas tissue of white leg shrimp (Litopenaeus vannamei).

Keywords

Main Subjects


Ardiansyah, S., Irawan, B., & Soegianto, A. (2012). Effect of cadmium and zinc in different salinity levels on survival and osmoregulation of white shrimp (Litopenaeus vannamei Boone). Marine and Freshwater Behaviour and Physiology, 45(4), 291-302.
Arora, S., Jain, J., Rajwade, J., & Paknikar, K. (2008). Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters. 179(2), 93-100.
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76.
Das, S., Tseng, L.C., Chou, C., Wang, L., Souissi, S., & Hwang, J.S. (2019). Effects of cadmium exposure on antioxidant enzymes and histological changes in the mud shrimp Austinogebia edulis (Crustacea: Decapoda). Environmental Science and Pollution Research, 26(8), 7752-7762.
Food and Agriculture Organization. (2020). Sustainability in action. State of World Fisheries and Aquaculture. Rome, 200.
Frías-Espericueta, M. G., Abad-Rosales, S., Nevárez-Velázquez, A. C., Osuna-López, ; Páez-Osuna, F., Lozano-Olvera, R., & Voltolina, D. (2008). Histological effects of a combination of heavy metals on Pacific white shrimp Litopenaeus vannamei juveniles. Aquatic Toxicology, 89(3), 152-157.
Griffitt, R. J., Hyndman, K., Denslow, N. D., & Barber, D. S. (2009). Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicology Sciences, 107(2), 404–415.
Guo, H., Xian, J. A., Zheng, P. H., Lu, Y. P., Wang, L., Zhang, X. X., & Wang, A. L. (2022). Dietary copper affects antioxidant status of shrimp (Penaeus monodon) reared in low salinity water. Aquaculture Reports, 22, 100979.
Hidayati, N. V., Prudent, P., Asia, L., Vassalo, L., Torre, F., Widowati, I., & Doumenq, P. (2020). Assessment of the ecological and human health risks from metals in shrimp aquaculture environments in Central Java, Indonesia. Environmental Science and Pollution Research, 27(33), 41668-41687.
Ho, C., & Argáez, C. (2018). Topical Silver Nitrate for the Management of Hemostasis: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines. Canadian Agency for Drugs and Technologies in Health Rapid Response Report, 62-74.
Huang, Y. J., Zhang, N. N., Fan, W. J., Cui, Y. Y., Limbu, S. M., Qiao, F., & Li, D. L. (2018). Soybean and cottonseed meals are good candidates for fishmeal replacement in the diet of juvenile Macrobrachium nipponense. Aquaculture international, 26(1), 309-324.
Korolyuk, M. A., Ivanova, L. I., Maiorova, I. G., & Tokarev, V. E. (1988). A method for measuring catalase activity. Laboratornoe delo,  (1), 16-19.
Lin, Y; Huang, J.J; Dahms, H.U; Zhen, J.J. and Ying, X.P. (2017). Cell damage and apoptosis in the hepatopancreas of Eriocheir sinensis induced by cadmium. Aquatic Toxicology, 190, 190-198.
Liu, H. L., Yang, S. P., Wang, C. G., Chan, S. M., Wang, W. X., Feng, Z. H., & Sun, C. B. (2015). Effect of air exposure and resubmersion on the behavior and oxidative stress of Pacific white shrimp Litopenaeus vannamei. North American Journal of Aquaculture, 77(1), 43-49.
Macusi, E. D., Estor, D. E. P., Borazon, E. Q., Clapano, M. B., & Santos, M. D. (2022). Environmental and Socioeconomic Impacts of Shrimp Farming in the Philippines: A Critical Analysis Using PRISMA. Sustainability, 14(5), 2977.
Méndez-Martínez, Y., García-Guerrero, M. U., Arcos-Ortega, F. G.,  Martínez-Córdova, L. R., Yamasaki-Granados, S., Pérez-Rodríguez, J. C., & Cortés-Jacinto, E. (2018). Effect of different ratios of dietary protein-energy on growth, body proximal composition, digestive enzyme activity, and hepatopancreas histology in Macrobrachium americanum (Bate, 1868) prawn juveniles. Aquaculture, 485, 1-11.
Tietze, F. (1969). Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Analytical Biochemistry, 27, 502-522.
Winterbourn, C., Hawkins, R., Brian, M., & Carrell, R. W. (1975). The estimation of red cell superoxide dismutase activity. Journal of Laboratory and Clinical Medicine, 85(2): 337-4. 
Xian, J.A., Wang, A. L., Miao, Y. T., and Li, B. (2013). Flow cytometric analysis of In vitro cytotoxicity of cadmium in haemocytes from the tiger shrimp, Penaeus monodon. Bulletin of environmental contamination and toxicology, 90(1): 46-50.
Xiong, D., Fang, T., Yu, L., Sima, X., & Zhu, W. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409, 1444–1452. 
Yang, L.H., Huang, H., & Wang, J. J. (2010). Antioxidant responses of citrus red mite, Panonychus citri (McGregor) (Acari Tetranychidae), exposed to thermal stress. Journal of Insect Physiology56, 1871–1876.
Yap, C. K., Tan, W. S., Wong, K. W., Ong, G. H., Cheng, W. H; Nulit, R., & You, C. F. (2021). Antioxidant Enzyme Activities as Biomarkers of Cu and Pb Stress in Centella asiatica. Stresses, 1(4), 253-265.
Zhang, C., Jin, Y., Yu, Y., Xiang, J., & Li, F. (2021). Cadmium-induced oxidative stress, metabolic dysfunction and metal bioaccumulation in adult palaemonid shrimp Palaemon macrodactylus (Rathbun, 1902). Ecotoxicology and Environmental Safety, 208, 111591.
Zhang, C., Yu, K., Li, F., & Xiang, J. (2017). Acute toxic effects of zinc and mercury on survival, standard metabolism, and metal accumulation in juvenile ridgetail white prawn, Exopalaemon carinicauda. Ecotoxicology and environmental safety, 145, 549-556.