The study of fat, Protein, and production levels of milk in Holstein dairy cows treated with arginine

Document Type : Research Paper

Authors

1 DVM Graduated, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran

2 Associate Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran

3 Assistant Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran

4 DVSc Graduate, Department of Theriogenology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

5 Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

    In this study, 73 non-pregnant and clinically healthy and lactating Holstein cows without any clinical signs, and with a mean parity of 3.2 ± 1.4, days in milk at the beginning of study 110 ± 20 days, body condition scour (BCS) of about 3.2 ± 0.3, and milk production rate of 48± 10 kg were selected and randomly placed in two treatment and control groups. In the treatment group (n=36), arginine (155 μmol / kg body weight) was injected once every 8 hours a day for 6 days, and in the control group (n=37) saline solution (0.11 ml/kg body weight, once every 8 hours a day) was injected for 6 days. The results showed that there was no difference between the treatment and the controle group in terms of milk production (38.5 and 36 kg, P=0.3), fat (3.7 and 3.8%, P=0.8) and protein (3.1 and 3.1%, P=0.5) levels.  It was concluded from this study that the use of arginine after the peak of milk production could not increase the fat, protein, and production levels of milk.

Keywords

Main Subjects


Azarbayejani, R., & Mohammadsadegh, M. (2021). Glucose, insulin, and cortisol concentrations and glucose tolerance test in Holstein cows with inactive ovaries. Tropical Animal Health and Production53(1), 41. doi.org/10.1007/s11250-020-02448-7
Burton, J. L., McBride, B. W., Block, E., Glimm, D. R., & Kennelly, J. J. (1994). A review of bovine growth hormone. Canadian Journal of Animal Science74(2), 167-201. doi: 10.4141/cjas94-027.
Chiofalo, V., Baldi, A., Savoini, G., Polidori, F., Dell'Orto, V., & Politis, I. (1999). Response of dairy ewes in late lactation to recombinant bovine somatotropin. Small Ruminant Research34(2), 119-125. doi: 10.1016/S0921-4488(99)00061-9.
Chew, B. P., Eisenman, J. R., & Tanaka, T. S. (1984). Arginine infusion stimulates prolactin, growth hormone, insulin, and subsequent lactation in pregnant dairy cows. Journal of Dairy Science67(11), 2507-2518.
Clark, J. H. (1975). Lactational responses to postruminal administration of proteins and amino acids. Journal of Dairy Science58(8), 1178-1197.
Davis, S. L. (1972). Plasma levels of prolactin, growth hormone, and insulin in sheep following the infusion of arginine, leucine and phenylalanine. Endocrinology91(2), 549-555.
Ding, L., Shen, Y., Wang, Y., Zhou, G., Zhang, X., Wang, M., ... & Zhang, J. (2019). Jugular arginine supplementation increases lactation performance and nitrogen utilization efficiency in lactating dairy cows. Journal of animal science and biotechnology10(1), 1-10. https://doi.org/10.1186/s40104-018-0311-8
Disenhaus, C., Jammes, H., Hervieu, J., Ternois, F., & Sauvant, D. (1995). Effects of recombinant bovine somatotropin on goat milk yield, composition and plasma metabolites. Small Ruminant Research15(2), 139-148.. doi:10.1016/0921-4488(94)00019-4
Gow, C. B., Ranawana, S. S. E., Kellaway, R. C., & McDowell, G. H. (1979). Responses to post-ruminal infusions of casein and arginine, and to dietary protein supplements in lactating goats. British Journal of Nutrition41(2), 371-382.
Hayashi, A. A., Nones, K., Roy, N. C., McNabb, W. C., Mackenzie, D. S., Pacheco, D., & McCoard, S. (2009). Initiation and elongation steps of mRNA translation are involved in the increase in milk protein yield caused by growth hormone administration during lactation. Journal of Dairy Science92(5), 1889-1899.doi: 10.3168/jds.2008-1334 PMID: 19389947.
Hertelendy, F., Machlin, L., & Kipnis, D. M. (1969). Further studies on the regulation of insulin and growth hormone secretion in the sheep. Endocrinology84(2), 192-199.
Hertelendy, F., Machlin, L. J., Takahashi, Y., & Kipnis, D. M. (1968). Insulin release from sheep pancreas in vitro. Journal of Endocrinology41(4), 605-606.
Hertelendy, F., Takahashi, K., Machlin, L. J., & Kipnis, D. M. (1970). Growth hormone and insulin secretory responses to arginine in the sheep, pig, and cow. General and comparative endocrinology14(1), 72-77.
Lassala, A., Bazer, F. W., Cudd, T. A., Li, P., Li, X., Satterfield, M. C., ... & Wu, G. (2009). Intravenous administration of L-citrulline to pregnant ewes is more effective than L-arginine for increasing arginine availability in the fetus. The Journal of Nutrition139(4), 660-665.
McATEE, J. W., & TRENKLE, A. (1971). Effects of feeding, fasting, glucose or arginine on plasma prolactin levels in the bovine. Endocrinology89(3), 730-734.
McAtee, J. W., and A. Trenkle. 1971. Metabolic regulation of plasma insulin levels in cattle. J. Anim. Sci. 33:438.
Mepham, T. B. (1982). Amino acid utilization by lactating mammary gland. Journal of dairy science65(2), 287-298. doi.org/10.3168/jds.S0022-0302(82)82191-7
Moncada, S., & Higgs, A. (1993). The L-arginine-nitric oxide pathway. New England journal of medicine329(27), 2002-2012.
National Research council (2001). Nutritional Requirement of Dairy cows.Seventh Revised Edition.ISBN: 978-0-309-06997-7.doi.org/10.17226/9825.
Oliveira, L. H., Nascimento, A. B., Monteiro Jr, P. L. J., Guardieiro, M. M., Wiltbank, M. C., & Sartori, R. (2016). Development of insulin resistance in dairy cows by 150 days of lactation does not alter oocyte quality in smaller follicles. Journal of dairy science99(11), 9174-9183.doi.org/10.3168/jds.2015-10547.
Sallam, S. M. A., Nasser, M. E. A., & Yousef, M. I. (2005). Effect of recombinant bovine somatotropin on sheep milk production, composition and some hemato-biochemical components. Small Ruminant Research56(1-3), 165-171.
Seifert, E. L., Estey, C., Xuan, J. Y., & Harper, M. E. (2010). Electron transport chain-dependent and-independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. Journal of Biological Chemistry285(8), 5748-5758..DOI 10.1074/jbc.M109.026203
Squires, E. J. (2003). Endocrine manipulation of reproduction. In Applied animal endocrinology (pp. 154-191). Wallingford UK: CABI Publishing.
Vicini, J. L., Clark, J. H., Hurley, W. L., & Bahr, J. M. (1988). Effects of abomasal or intravenous administration of arginine on milk production, milk composition, and concentrations of somatotropin and insulin in plasma of dairy cows. Journal of dairy science71(3), 658-665.
Wang, M., Xu, B., Wang, H., Bu, D., Wang, J., & Loor, J. J. (2014). Effects of arginine concentration on the in vitro expression of casein and mTOR pathway related genes in mammary epithelial cells from dairy cattle. PLoS One9(5), e95985..
Zheng, P., Song, Y., Tian, Y., Zhang, H., Yu, B., He, J., ... & Chen, D. (2018). Dietary arginine supplementation affects intestinal function by enhancing antioxidant capacity of a nitric oxide–independent pathway in low-birth-weight piglets. The Journal of nutrition148(11), 1751-1759. doi:https://doi.org/10.1093/jn/nxy198.
Zheng, P., Yu, B., He, J., Tian, G., Luo, Y., Mao, X., ... & Chen, D. (2013). Protective effects of dietary arginine supplementation against oxidative stress in weaned piglets. British journal of nutrition109(12), 2253-2260.