Detection of Escherichia coli and its toxins in food using carbon quantum dots conjugated antibody

Document Type : Research Paper

Authors

1 PhD Student in Food Hygiene, Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Associate Professor, Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Professor, Department of Medicinal Chemistry and Toxicology Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

4 Associate Professor, Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

    In this study, the possibility of using carbon quantum dots (CQD) to detect and determine the amount of antigen to finally quantify E. coli and its toxins in food stuffs. Carbon quantum particles were produced using citric acid and ethylenediamine. The production of the polyclonal anti- Escherichia coli antibody was carried out with immunization of the rabbits and purification of the IgG antibodies from the hyper immune serum using ion exchange chromatography. The production of the carbon quantum dot nanoparticles was confirmed using FTIR and atomic force microscopy with efficiency of 67%. The validation of the carbon quantum dot coupling to anti-bacterial antibodies was performed using EDC-NHS, the appropriate formation and stability of the complex for a period of 6 months, was confirmed by ELISA and fluorometry methods. The addition of high concentrations of E. coli bacteria to the complex reduced the diffusion of fluorescence emission of CQD at a wavelength of 440 nm by stimulating at a wavelength of 350 nm. Increasing the concentration of E. coli further reduced the intensity of emission which led to an increase in the difference between the emission of the conjugated and the control samples with a detection limit equal to 30 CFU/mL bacteria. Based on the results of this study, the conjugation of CQD with an antibody against a bacterium or a substance can be used to detect and determine the amount of that bacterium or substance.

Keywords


Alarfaj, N. A., El-Tohamy, M. F., & Oraby, H. F. (2018). CA 19-9 pancreatic tumor marker fluorescence immunosensing detection via immobilized carbon quantum dots conjugated gold nanocomposite. International Journal of Molecular Sciences, 19(4), 1162.
Bilan, R., Fleury, F., Nabiev, I., & Sukhanova, A. (2015). Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjugate Chemistry, 26(4), 609-624.
Cooper, H. M., & Patterson, Y. (2008). Production of polyclonal antisera. Current Protocols in Immunology, 82(1), 2.4.1-2.4.10.
Dager, A., Uchida, T., Maekawa, T., & Tachibana, M. (2019). Synthesis and characterization of Mono-disperse carbon Quantum Dots from fennel Seeds: photoluminescence analysis using Machine Learning. Scientific Reports, 9(1), 1-12
Das, P., Bose, M., Ganguly, S., Mondal, S., Das, A. K., Banerjee, S., & Das, N. C. (2017). Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria Escherichia coli. Nanotechnology, 28(19), 195501.
De, B., Voit, B., & Karak, N. (2014). Carbon dot reduced Cu 2 O nanohybrid/hyperbranched epoxy nanocomposite: mechanical, thermal and photocatalytic activity. RSC Advances, 4(102), 58453-58459.
Foubert, A., Beloglazova, N. V., Rajkovic, A., Sas, B., Madder, A., Goryacheva, I. Y., & De Saeger, S. (2016). Bioconjugation of quantum dots: Review & impact on future application. TrAC Trends in Analytical Chemistry, 83, 31-48.
Hay, F., & Westwood OMR. (2002). Practical Immunology. In (pp. 14-15): United Kingdom: Blackwell Publishing Company.
Janus, Ł., Radwan-Pragłowska, J., Piątkowski, M., & Bogdał, D. (2020). Smart, Tunable CQDs with Antioxidant Properties for Biomedical Applications—Ecofriendly Synthesis and Characterization. Molecules, 25(3), 736.
Liu, X., Hao, J., Liu, J., & Tao, H. (2018, February). Green synthesis of carbon quantum dots from lignite coal and the application in Fe3+ detection. In IOP Conference Series: Earth and Environmental Science (Vol. 113, No. 1, p. 012063). IOP Publishing.
Mako, T. L., Racicot, J. M., & Levine, M. (2018). Supramolecular luminescent sensors. Chemical Reviews, 119(1), 322-477.
Mandal, T. K., & Parvin, N. (2011). Rapid detection of bacteria by carbon quantum dots. Journal of Biomedical Nanotechnology, 7(6), 846-848.
Perikala, M., & Bhardwaj, A. (2019). Highly Stable White-Light-Emitting Carbon Dot Synthesis Using a Non-coordinating Solvent. ACS Omega.
Priyanka, B., Patil, R. K., & Dwarakanath, S. (2016). A review on detection methods used for foodborne pathogens. The Indian Journal of Medical Research, 144(3), 327
Ramezani, Z., Qorbanpour, M., & Rahbar, N. (2018). Green synthesis of carbon quantum dots using quince fruit (Cydonia oblonga) powder as carbon precursor: Application in cell imaging and As3+ determination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 549, 58-66.
Sapsford, K. E., Algar, W. R., Berti, L., Gemmill, K. B., Casey, B. J., Oh, E., ... & Medintz, I. L. (2013). Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chemical Reviews, 113(3), 1904-2074.
Sonawane, S. K., Arya, S. S., LeBlanc, J. G., & Jha, N. (2014). Use of nanomaterials in the detection of food contaminants. European Journal of Nutrition & Food Safety, 301-317.
Wang, B., Huang, X., Ma, M., Shi, Q., & Cai, Z. (2014). A simple quantum dot-based fluoroimmunoassay method for selective capturing and rapid detection of Salmonella Enteritidis on eggs. Food Control, 35(1), 26-32.
Wang, R., Xu, Y., Zhang, T., & Jiang, Y. (2015). Rapid and sensitive detection of Salmonella Typhimurium using aptamer-conjugated carbon dots as fluorescence probe. Analytical Methods, 7(5), 1701-1706.
Weng, C. I., Chang, H. T., Lin, C. H., Shen, Y. W., Unnikrishnan, B., Li, Y. J., & Huang, C. C. (2015). One-step synthesis of biofunctional carbon quantum dots for bacterial labeling. Biosensors and Bioelectronics, 68, 1-6.
Xu, Q., Pu, P., Zhao, J., Dong, C., Gao, C., Chen, Y., ... & Zhou, H. (2015). Preparation of highly photoluminescent sulfur-doped carbon dots for Fe (III) detection. Journal of Materials Chemistry A, 3(2), 542-546.
Zheng, Y., Zheng, J., Wang, J., Yang, Y., Lu, T., & Liu, X. (2020). Facile Preparation of Stable Solid-State Carbon Quantum Dots with Multi-Peak Emission. Nanomaterials, 10(2), 303.
Zhong, M., Yang, L., Yang, H., Cheng, C., Deng, W., Tan, Y., ... & Yao, S. (2019). An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157: H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosensors and Bioelectronics, 126, 493-500.