The distribution of alkaline phosphatase and carbohydrates in early turkey (Meleagris gallopavo) embryo

Document Type : Research Paper

Authors

1 PhD graduated of Histology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

2 Professor, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

3 Professor, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad and Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

    In developmental studies of the embryo, it is very important to find suitable methods for the characterization of various tissue. This study to determine suitable markers in the development of the nervous system and other organs in turkey embryo to be a clue for exploring the role of alkaline phosphatase in the development of an embryo,perception of organ function after birth, and studies of embryogenesis of the nervous system.. The embryos from stages 19 to 31 Hamburger & Hamilton, were studied by histochemical and immunostaining techniques. The results showed that the stage-specific embryonic antigen-1 expression was restricted to the spinal cord, and other organs were negative. At stages, 19, 20 and 29 Hamburger & Hamilton, alkaline phosphatase reaction was either negative or weakly positive in embryonic organs. At stages 30-31 Hamburger & Hamilton, a strong alkaline phosphatase reaction was observed in the spinal cord, mesonephros, gonad, dorsal aorta, and liver sinusoids. Sections stained with periodic acid-Schiff confirmed the presence of glycogen in the heart, mesonephros, gonad, notochord, chondrocytes, and weakly in the ventral horn of the spinal cord. This study demonstrates that alkaline phosphatase reaction and the stage-specific embryonic antigen-1 expression are effective markers for developing the nervous system in turkey embryos. Also, we observed that both periodic acid-Schiff and alkaline phosphatase staining are useful methods to study other organs in turkey embryos.

Keywords


Abdel-Moniem, M.E, Edin, M.A, Abdel-Rahman, A, and El-Nady, Y.F.A.M. (2000). Changes in the topography of the liver of one-humped camel during the prenatal life. Assiut Veterinary Medical Journal, 44(87), 22-34.
Adeva-Andany, M.M, González-Lucán, M, Donapetry-García, C, Fernández-Fernández, C, and Ameneiros-Rodríguez, E. (2016). Glycogen metabolism in humansBBA clinical Journal, 5, 85-100.
Banaee, M. (2020). Alkaline phosphatase activity as a biochemical biomarker in aqua-toxicological studies. International Journal Aquatic Biology, 8(2), 143-147.
Banaee, M, Soltanian, S,  Sureda, A,  Gholamhosseini, A,  Nematdoost Haghi, B,  Akhlaghi, M, and  Derikvandy, A.  (2019). Evaluation of single and combined effects of cadmium and microplastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere, 236: 124335.
Bastian, C, Quinn, J,  Doherty, C,  Franke, C,  Faris, A,  Brunet, S, and  Baltan, S.  (2019). Role of brain glycogen during ischemia, aging and cell- to- cell- interaction. Advances in Neurobiology, 23, 347-361.
Bolin, G and Burggren, W.W. (2013). Metanephric kidney development in the chicken embryo: Glomerular numbers, characteristics and perfusion. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 166(2), 343-350.
Brichacek, L.A and Brown, M.C. (2019). Alkaline phosphatase: a potential biomarker for stroke and implications for treatment. Metabolic Brain Disease,  34(1), 3–19.  
Brichacek, L.A. (2019). Systemic inhibition of tissue nonspecific alkaline phosphatase alters the brain-immune axis in experimental sepsis. Scientific Reports, 9 (1), 1-19.
Burggren, W.W, Santin J.F, and Antich, M.R. (2016). Cardio-respiratory development in bird embryos: new insights from a venerable animal model. Revista Brasileira de Zootecnia, 45(11), 709-728.
Chang, G.B. (2012). The development of primordial germ cells (PGCs) and testis in the quail embryo. Pakistan Veterinary Journal, 32(1), 88-92.
Chu, P and Grunwald, G.B. (1990). Generation and characterization of monoclonal antibodies specific for the retinal pigment epithelium. Investigative Ophthalmology & Visual Science, 31(5). 856-862.
Daimon, T. (1977). The presence and distribution of glycogen particles in chondrogenic cells of the tibiotarsal anlage of developing chick embryos. Calcified Tissue Research, 23(1), 45-51.
Dʾcosta, S and Petitte, N.J. (1999). Characterization of stage-specific embryonic antigen-1 (SSEA-1) expression during early development of the turkey embryo. The International Journal of Developmental Biology, 43, 349-356.
Dehghani, H, Narisawa, S, Millán, J.L, and Hahnel, A.C. (2000). Effects of disruption of the embryonic alkaline phosphatase gene on preimplantation development of the mouse. Developmental dynamics, 217(4), 440-448.
Doaa, M.M, Enas, A, Hassan, A.H.S, and Fatma, A. (2013). Histogenesis of liver of Dandarawi Chicken. American Journal of Life Science Researches, 1(2), 47-58.
Duman, R, Ertekin, T, Duman, R, Aslan, E, Sabaner, M.C. and Çetinkaya, E. (2019). The novel model: Experimental optical coherence tomography–guided anterior segment imaging chick embryo model. Indian Journal of Ophthalmology, 67(1), 54-58.
Farzaneh, M, Hassani, S.N,  Mozdziak, P, and  Baharvand, H. (2017). Avian embryos and related cell lines: A convenient platform for recombinant proteins and vaccine production. Biotechnology, 12(5), 1-10.
Ellingwood, S.S, and Cheng, A. (2018). Biochemical and clinical aspects of glycogen storage disease. Journal of Endocrinology, 238 (3), 131-141.
Gabrielli, M.G and Accili, D. (2010). The chick chorioallantoic membrane: a model of molecular, structural, and functional adaptation to transepithelial ion transport and barrier function during embryonic development. J. Biology Medicine Research, 1-12.
Gomes, R.J, Ayub, L.C, Dos Reis, C.A,  Machado, M.J, da Silva, J,  Nádia Fayez Omar, N.F, and de Miranda Soares, M.A.  (2017). Goblet cells and intestinal alkaline phosphatase expression (IAP) during the development of the rat small intestine. Acta Histochemica Journal, 119 (1), 71-77.
Hahnel, A.C, Rappolee, D.A, Millan, J.L, Manes, T, Ziomek, C.A, Theodosiou, N.G, Werb, Z, Pedersen, R.A, and Schultz, G.A.  (1990). Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development, 110(2), 555-564.
Hamburger, V and Hamilton, H.L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88(1), 49-92.
Hamodi, H.M, Abed, A.A, and Taha A.M. (2013). Comparative anatomical, histological and histochemical study of the liver in three species of birds. Rafidain Journal of Science, 24(5), 12-23.
Jung, J.G, Kim, D.K,  Park, T.S, Lee, S.D, Lim, J.M, and Han, J.Y. (2005). Development of novel markers for the characterization of chicken primordial germ cells. Stem Cells, 23(5), 689-698.
Khailova, L, Robison, J, Jaggers, J, Ing, R, Lawson, S, Treece, A, Soranno, D, Lujan, S.O, and Davidson, J.A. (2020). Tissue alkaline phosphatase activity and expression in an experimental infant swine model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Journal of Inflammation, 17(27), 1-13.  
Kheirabadi, M, Nabipour, A, Rassouli, M.B, and Dehghani, H. (2015). Morphological development of ovaries in ostrich (Struthio camelus) embryo. Comparative Clinical Pathology, 24(5), 1185-1191.
Khillare, G.S, Sastry, K.V.H, Singh, R.P, Agrawal, R, and Mohan, J. (2013). Acid and alkaline phosphatase enzyme activity in sperm storage tubules in Japanese quail. Indian Journal of Poultry Science, 48(1), 128-130.
Klusoňová, P and Zemanová, Z. (2007). Characteristics of the compensatory renal growth of the remnant embryonic chick kidneys. Physiological Research, 56(5), 651-654.
 
Koso, H, Ouchi, Y, Tabata, Y, Aoki, Y, Satoh, S, Ken-Ichi Arai, K.I, and Watanabe, S. (2006). SSEA-1 marks regionally restricted immature subpopulations of embryonic retinal progenitor cells that are regulated by the Wnt signaling pathway. Developmental Biology, 292(1), 265-276.
Kudo, T, Kaneko, M, Iwasaki, H, Togayachi, A, Nishihara, S, Abe, K and Narimatsu, H. (2004). Normal embryonic and germ cell development in mice lacking α1, 3-fucosyltransferase IX (Fut9) which show disappearance of stage-specific embryonic antigen1. Molecular and Cellular Biology, 24(10), 4221-4228.
Lallès, J.P. (2014). Intestinal alkaline phosphatase: novel functions and protective effects. Nutrition Reviews, 72(2), 82-94.
Lowe, D, Sanvictores, T and John, S. (2020). Alkaline phosphatase. Nevada, USA: Stat Pearls Publishing LLC.
Lumsangkul, C, Fan, Y.K, Chang, S.C, Ju, J.C, and Chiang, H.I. (2018). Characterizing early embryonic development of Brown Tsaiya Ducks (Anas platyrhynchos) in comparison with Taiwan Country Chicken (Gallus Gallus domestics). Plos One, 13(5), 1-17.
Mc Connell, R.E, Higginbotham, J.N,  Shifrin Jr, D.A, Tabb, D.L, Coffey, R.J and  Tyska, M.J. (2009). The enterocyte microvillus is a vesicle-generation organelle. Journal Cell Biology, 185(7), 1285-1298.
McGaedy, T.A; Quinn, P.J; Fitzpatrick, E.S; and Ryan, M.T. (2006). Veterinary embryology. Dublin, Ireland: Blackwell Publisher.
Migocka-Patrzalek, M, and Elias, M. (2021). Muscle glycogen phosphorylase and its function partners in health and disease. Cell, 10, 2-16.
Mitkus, M, Nevitt, G.A, and Kelber, A. (2018). Development of the visual system in a Burrow-Nesting seabird: Leachs storm petrel. Brain Behavior and Evolution, 91: 4-16.
Moog, F. (1944). Localizations of alkaline and acid phosphatases in the early embryogenesis of the chick. The Biological Bulletin, 86(1), 51-80.
Moog, F. (1950). The functional differentiation of the small intestine. I. The accumulation of alkaline phosphomonoesterase in the duodenum of the chick. Journal of Experimental Zoology, 115(1): 109-129. (Quoted by Hinni & Wattereson 1963, Journal of Morphology, 113, 381-425).
Mori, T. (1965). Histochemical studies on the distribution of alkaline phosphatase in early human embryos III. Embryos in streeter's horizon XII. Okajimas Folia Anatomica Japonica, 40(4-6), 765-793.
Mun, A.M and Kosin, I.L. (1960). Developmental Stages of the Broad Breasted Bronze Turkey Embryo. Biological Bulletin, 119 (1), 90-97.
Nabbale, D.L, Kalungi, S, Bimenya, S.G, Othieno, E, and Okwi, L.A. (2014). Reliability of using Bests carmine and Hematoxylin–Eosin methods for the detection of glycogen in paraffin wax tissue sections. African Journal of Animal and Biomedical Sciences, 8(1), 30–39.
Naeemipour, M and Bassami, M. (2013). Isolation, culture and characterization of chicken primordial germ cells. Journal of Cell and Molecular Research, 5(2), 48-53.
Oh, S.W, Han, K.H, and Ha, S.Y. (2015). Associations between renal hyper filtration and serum alkaline phosphatase. Plos One, 10 (4), 1-11.
Pederson, B.A,  Chen, H,  Schroeder, J.M, Shou, W,  DePaoli-Roach, A.A, and  Roach, P.J.  (2004). Abnormal cardiac development in the absence of heart glycogen. Molecular and Cellular Biology, 24(16), 7179-7187.
Peeters, M, Ottersbach, K, Bollerot, K, Orelio, C, de Bruijn, M, Wijgerde, M and  Dzierzak, E. (2009). Ventral embryonic tissues and Hedgehog proteins induce early AGM hematopoietic stem cell development. Development, 136(15), 2613-2621.
Raisi, M, Pourkhabaz, H.R, Banaee, M, Pourkhabaz, A, and Javanmardi, S. (2018). Effects of Pirimicarb carbamate insecticide alone and in combination with lead (Pb) on biochemical parameters of soft tissues in freshwater snail, Galba truncatula. International Journal of Aquatic Biology, 6(3), 126-137.
Sabatakou, O, Paraskevakou, E, Tseleni-Balafouta, S, and Patsouris, E. (2007). Histochemical study of alkaline phosphatase activity in the chicken intestine. Bulgarian Journal of Veterinary Medicine, 10(2), 83-93.
Saha, S and Kaviraj, A. (2009). Effects of cypermethrin on some biochemical parameters and its amelioration through dietary supplementation of ascorbic acid in freshwater catfis Heteropneustes fossilis. Chemosphere, 74(9), 1254-1259.
Smelser, G.K. (1965). Embryology and morphology of the lens. Investigative Ophthalmology & Visual Science, 4(4), 398-410.
Soto-Suazo, M and Zorn, T.M. (2005). Primordial germ cells migration: morphological and molecular aspects. Animal Reproduction Science, 2(3), 147-60.
Štefková, K, Procházková, J, and Pacherník, J. (2015). Alkaline phosphatase in stem cells. Stem Cells International, 1-11.
Szymanska, E,  Jóźwiak-Dzięcielewska, D.A, Gronek, J, Niewczas, M,  Czarny, W,   Rokicki, D   and Gronek  P. (2021). Hepatic glycogen storage diseases: pathogenesis, clinical symptoms and therapeutic management. Archives of Medical Science, 17(2), 304-313.
Tapson, J.S, Hodson, A.W, Marshall, S.M, and Wilkinson, R. (1988). Urinary enzyme excretion after donor nephrectomy. Nephron, 48(2), 126-131.

Kliegman, R.M, Lye, P.S, Bordini, B, Toth, H, and Basel, D. (2018). Nelson Pediatric Symptom-Based Diagnosis. Wisconsin, USA: Elsevier publisher.

Vuković, S and Lucić, H. (2005). Development of the glycogen body in turkey (Meleagris gallopavo) embryo. Veterinarski Arhiv, 75(2), 101-110.
Wade, A.J, French, N.A, and Ireland, G.W. (2014). The potential for archiving and reconstituting valuable strains of turkey (Meleagris gallopavo) using primordial germ cells. Poultry Science, 93(4), 799-809.
Wittig, J and Münsterberg, A. (2016). The early stages of heart development: insights from chicken embryosJournal of Cardiovascular Development and Disease, 3(2), 2-15.
Yamazoe, M, Mizuno, A, Nishi, Y, Niwa, K, and Isobe M. (2016). Serum alkaline phosphatase as a predictor of worsening renal function in patients with acute decompensated heart failure. Journal of Cardiology, 67(5), 412-417.