Biochemical study on cardiotoxic effects of Mesobuthus eupeus scorpion venom and the role of antivenom and carvedilol in rats

Document Type : Research Paper

Authors

1 DVM Graduated, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Associate Professor, Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

4 Professor, Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran and Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran

Abstract

   Mesobuthus eupeus is an indigenous scorpion species in Southwest Iran which is responsible for the majority of scorpion sting cases in Khuzestan province. To conduct this research a total of 75 Wistar male rats were divided into 5 equal groups randomly. Group 1 (control); Group 2: M. eupeus venom was administered with a dose of 1 mg/kg IP. Group 3: Venom + 0.5 ml of polyvalent antivenom intramuscularly, 30 minutes after envenomation. Group 4: Venom + 5 mg/kg of carvedilol 30 minutes after envenomation IP. Group 5: Venom + 0.5 ml of polyvalent antivenom + 5 mg/kg of carvedilol 30 minutes after envenomation IP. Blood samples were collected by cardiac puncture at 8, 24, and 48 hours after saline/venom injection from anesthetized rats. Heparinized plasma was isolated to measure cardio-related biochemical parameters, including the activity of CPK, LDH, and AST and troponin-I levels were measured by routine methods. The results showed that the activity of the enzymes of CPK-MB, LDH, AST, and also troponin-I as a specific index of heart damage elevated at different times following venom injection compared with the control group. Even though the administration of anti-venom following venom injection at different times significantly reduced the activity of these enzymes and also troponin-I levels, but the level of these indicators was still higher than the control group. Carvedilol administration had no significant effect on reducing the activity of the above-mentioned factors. Meanwhile, the combined administration of carvedilol and anti-venom following venom injection had similar results with the antivenom group. This result may relate to the dose and its frequency of carvedilol use. 

Keywords


Abdel-Rahman, M.A.; Ayed, A.S.; Abdel-Mottaleb, Y.; Omrana, M.A.A. and Nabil, Z.I. (2015). Cardiac disorders and mode of action of the Egyptian scorpion venom Androctonus bicolor on isolated toad’s heart. The Journal of Basic and Applied Zoology, 72: 137-144.
Adi-Bessalem, S.; Kammoudi-Triki, D. and Laraba-Djebari, F. (2008). Pathophysiological effect of Androctonus australis hector scorpion venom: tissue damages and inflamatory response. Experimental and Toxicologic Pathology, 60(4-5): 373-380.
Ali, N. and Ali, N.O.M. (2015). Scorpion sting in different regions of Sudan: Epidemiological and clinical survey among university students. International Journal of Bioinformatics and Biomedical Engineering, 1(2): 147-152.
Antelava, N.; Gobunia, L.; Gambashidze, K.; Peteiashvili, Sh. and Besjitashvili, N. (2009). Effect of carvedilol, losartan and trimetazidin on functional parameters of isolated heart at oxidative stress. Georgian Medical News, 168: 81-84.
Bawaskar, H.S. and Bawaskar, P.H. (1992). Management of the cardiovascular manifestation of poisoning by the Indian red scorpion (Mesobuthus eupeus). Heart, 68 (11): 478-480.
Bouaziz, M.; Bahloul, M.; Kallel, H.; Samet, M.; Ksibi, H.; Dammak, H. et al. (2008). Epidemiological, clinical characteristics and outcome of severe scorpion envenomation in South Tunisia: multivariate analysis of 951 cases. Toxicon, 52: 918-926.
Chakroun-Walha, O.; Karray, R.; Jerbi, M.; Ben Rebeh, A.; Jammeli, C.; Bahloul, M. et al. (2018). Value of troponin levels in the diagnosis of cardiac dysfunction in moderate scorpion envenomation. Human and Experimental Toxicology, 37(6): 580-586.
Cid-Uribe, J.I.; Meneses, E.P.; Batista, C.V.F.; Ortiz, E. and Possani, L.D. (2019). Dissecting Toxicity: The venom gland transcriptome and the venom proteome of the highly venomous scorpion Centruroides limpidus (Karsch, 1879). Toxins, 11(5): 1-21.
Costal Oliveira, F.; Duarte, C.G.; Machado de Avila, R.A.; Melo, M.M.; Bordon, K.C.F. and Arantes, E.C. (2012). General biochemical and immunological characteristics of the venom from peruvian scorpion Hadruroides lunatus. Toxicon, 60: 934-942.
Cupo, P.; Figueiredo, A.B.; Filho, A.P.; Pintya, A.O.; Tavares Junior, G.A.; Caligaris, F. et al. (2007). Acute left ventricular dysfunction of severe scorpion envenomation is related to myocardial perfusion disturbance. International Journal of Cardiology, 116(1): 98-106.
Das, S.; Badhe, B.; Shaha, K.K.; Manickam, N. and Manigandan, G. (2013). Fatal scorpion envenomation: report of two cases. Journal of Indian Academy of Forensic Medicine, 35: 404-407.
Ebrahimi, V.; Hamdami, E.; Moemenbellah-Fard, M.D. and Jahromi, S.E. (2017). Predictive determinants of scorpion stings in a tropical zone of south Iran: use of mixed seasonal autoregressive moving average model. Journal of Venomous Animals and Toxins including Tropical Diseases, 23 (39): 2-13.
Kumar, A.; Dogra, S. and Prakash, A. (2009). Effect of carvedilol on behavioral, mitochondrial dysfunction, and oxidative damage againt D-galactose induced senscence in mice. Naunyn-Schmiedeber’s Archives of Pharmacology, 380(5): 431-441.
Latifi, M. and Tabatabai, M.  (1979). Immunological studies on Iranian scorpion venom and antiserum. Toxicon, 17: 617-621.
Mahmoodi Khatoonabadi, S.; Zare Mirakabadi, A. and Teimoorzadeh, S. (2016). Anti-venom injection time related effects of Hemiscorpius lepturus scorpion envenomation in rabbits. Archive of Razi Institute, 66(2): 139-145.
Matsui, H.; Morishima, I.; Numaguchi, Y.; Toki, Y.; Okumura, K. and Hayakawa, T. (1999). Protective effects of carvedilol against doxorubicin-induced cardiomyopathy in rats. Life Science, 65(12): 1265-1274.
Meki, A.A.M.; Mohey El-Deen, Z.M. and Mohey El-Deen, H. (2002). Myocardial injury scorpion envenomed children: Significance of assessment of serum scorpion troponin I and interleukin-8. Neuroendocrinology Letters, 23: 133-140.
Murugan, D. and Saini, G.K. (2019). Cytotoxic and lethal effects of recombinant β-BUTX-Lqq1a peptide against Lepidopteran insects and cell lines. Toxicology in Vitro, 10(60): 44-50.
Naserzadeh, P.; Nekhoee Mehr, S.; Sadabadi, Z.; Seydi, E.; Salimi, A. and Pourahmad, J. (2018). Curcumin protects mitochondria and cardiomyocytes from oxidative damage and apoptosis inclued by Hemiscorpius lepturus venom. Drug Research, 68(02): 113-120.
O,Collaço, R.C.; Hyslop, S.; Dorce, V.A.C.; Antunes, E. and Rowan, E.G. (2019). Scorpion venom increases acetylcholine release by prolonging the duration of somatic nerve action potentials. Neuropharmacology, 153: 41-52.
Pipelzadeh, M.H.; Dezfulian, A.R.; Jalali, M.T. and Mansori, A.K. (2006). In vitro and in vivo studies on some toxic effects of the venom from Hemiscorpius lepturus scorpion. Toxicon, 48: 93-103.
Pourkhalili, K.; Kim, E.; Mashayekhy, N.R.; Kamab, M.; Hoseiny, S.M.; Evazy, R. et al. (2015). Cardiotoxic and arrhythmogenic effect of Hemiscorpius lepturus scorpion venom in rats. Journal of Arthropod-Borne Disease, 9(2): 215-225.
Radmanesh, M. (1990). Clinical study of Hemiscorpius lepturus in Iran. Journal of Tropical Medicine and Hygiene, 93: 327-332.
Razi Jalali, M.; Jalali, M.T. and Mapar, Z. (2015). Evaluation of plasma cytokine levels in Mesouthus eupus (Scorpinida: Butidae) scorpion evenomation in rat treated with polyvalent antivenm. Jundishapur Journal of Health Sciences, 7(1): 1-5.
Razi jalali, M.; Fatemi Tabatabaae, S.R.; Ahmadizadeh, M. and Mohseni, H. (2017). Effects of hemiscorpius lepturus scorpion venom on hemogram and erythrocyte osmotic fragility and study the role of polyvalent antivenom in rat. Iranian Veterinary Journal, 13(1): 41-51(In Persian).
Ribeiro, E.L.; Pinto, M.C.L.; Labarrere, C.R.; Paes, P.R.; Paes-Leme, F.O.; Chavez-Olortegui, C. et al. (2010). Biochemical profile of dogs experimentally envenomation with Tityus serrulatus scorpion venom. Toxicon, 55(6): 1125-1131.
Schor, N.F. and Kliegman, R.M. (2011). Environmental Health Hazard. In: Kliegman, R. M. (Eds). Nelson Textbook of Pediatrics. Vol. 1, 19th ed, Elsevier Health Sciences, Saunders, P: 2464.
Tunez, I.; Collado, J.A.; Medina, F.J.; Munoz, M.C.; Gordillo, R.; Sampedro, C. et al. (2008). Protective effect of carvedilol on oxidative stress induced by okadaic acid in N1E-115 cells. Cardiovascular Pharmacology, 51(1): 92-98.
Wawaimuli, A.; Kenich, W.; Punniyakoti, T.; Veeraveedu, B.; Meilei, Ma.; Rajarajan, A. et al. (2010). Protective effect of carvedilol on daunorubicin induced cardiotoxicity and nephrotoxicity in rats. Toxicology, 274: 18-26.
Xu, X.; Duan, Z.; Di, Z.; He, Y.; Li, J.; Li, Z. et al. (2014). Proteomic analysis of the venom from the scorpion Mesobuthus martensii. Journal of Proteomics, 106:162-80.
Yılmaz, F.; Arslan, E.D.; Demir, A.; Kavalci, C.; Durdu, T.; Yılmaz, M.S. et al. (2013). Epidemiologic and Clinical Characteristics and Outcomes of Scorpion Sting in the Southeastern Region of Turkey, Turkish Journal of Trauma and Emergency Surgery, 19(5): 417-422.
Yue, T.L.; Ruffolo, R.R. and Feuerstein, J.G. (1999). Antioxidant Action of Carvedilol: A Potential Role in Treatment of Heart Failure. Heart Failure Reviews, 4(1): 39-52.
Zare Mirakabadi, A.; Mahmoodi Khatoonabadi, S. and Teimoorzadeh, S. (2011). Antivenom injection time related effects of Hemiscorpius lepturus scorpion envenomation in rabbits. Archives of Razi Institute, 66(2): 139-145.
Zayerzadeh, E.; Koohi, M.K.; Zare Mirakabadi, A.; Fardipoor, A.; Rabbani, S.E. and Anvari, M.S. (2012). Amelioration of cardio-respiratory perturbations following Mesobuthus eupeus envenomation in anesthetized rabbit with commercial polyvalent F (ab’2) antivenom. Toxicon, 59(2): 249-256.