اثر دانه جو پرتوتابی شده با بیم الکترون بر گرانروی، جمعیت باکتریایی، فعالیت آنزیمی و هیستومورفومتری روده جوجه‏ های گوشتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای تغذیه‌ی دام، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

2 استاد گروه علوم پایه، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 دانشیار گروه علوم دامی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

10.22055/ivj.2019.156349.2088

چکیده

    این آزمایش به منظور بررسی اثر دانه­ی جو پرتوتابی شده با بیم الکترون در دوز 40 کیلوگری بر گرانروی، جمعیت باکتریایی، فعالیت آنزیمی و هیستومورفومتری روده­ی جوجه‏های گوشتی انجام شد.  جیره‏های آزمایشی شامل سطوح 25 و 50 درصد دانه­ی جو (به صورت خام و پرتوتابی) و جیره­ی شاهد بر پایه­ی ذرت و کنجاله­ی سویا (بدون جو و پرتو) که مجموعاً شامل 5 تیمار و چهار تکرار و تعداد 12 قطعه پرنده در هر تکرار به مدت 42 روز در قالب طرح کاملاً تصادفی به اجرا درآمد.  با افزایش سطح دانه­ی جو به 50 درصد (خام و پرتوتابی) گرانروی محتویات ایلئوم افزایش معنی‏داری نسبت به سایر تیمارها نشان داد.  پرتوتابی سبب کاهش گرانروی ایلئوم در جیره­ی 50 درصد دانه­ی جو شد.  با افزایش سطح دانه­ی جو در جیره، pH محتویات ایلئوم کاهش معنی‏داری نشان داد اما پرتوتابی تأثیر معنی‏داری بر pH نشان نداد.  اثر تیمارهای آزمایشی بر جمعیت باکتریایی سکوم (کلی‏فرم، اشریشیا کلی و کل هوازی) معنی‏دار نبود.  اما با افزایش سطح دانه­ی جو خام به 50 درصد جمعیت لاکتوباسیل کاهش معنی‏داری نسبت به جیره­ی 25 درصد جو پرتوتابی و شاهد نشان داد.  فعالیت آنزیمی پانکراس و محتویات ژژنوم (آمیلاز و پروتئاز) بین تیمارهای آزمایشی معنی‏دار نبود.  فعالیت آنزیم لیپاز در بافت پانکراس با افزایش سطح دانه­ی جو به 50 درصد (خام و پرتوتابی) افزایش معنی‏داری نسبت به سایر تیمارها نشان داد.  تیمارهای آزمایشی بر خصوصیات هیستومورفومتری دئودنوم و ژژنوم شامل ارتفاع و قطر کرک، عمق و ضخامت کریپت، نسبت ارتفاع کرک به عمق کریپت، تعداد سلول‏های جامی شکل در بافت پوششی و کریپت، ضخامت بافت پوششی، ضخامت طبقه­ی عضلانی و ضخامت کل دیواره تأثیر معنی‏داری نشان نداد.  نتایج این آزمایش نشان داد که پرتوتابی باعث کاهش معنی‏دار گرانروی در سطح 50 درصد دانه­ی جو گردید اما اثر معنی‏داری بر pH، جمعیت میکروبی، فعالیت آنزیمی و هیستومورفومتری دئودنوم و ژژنوم نشان نداد.

کلیدواژه‌ها


Adibmoradi, M.; Navidshad, B.; Seifdavati, J. and Royan, M. (2006). Effect of dietary garlic on histological structure of small intestinal In broiler chickens. The Journal of Poultry Science, 43(4): 378-383.

Al-Kaisey, M.T.; Mohammed, M.A.; Alwan, A-K.H. and Mohammed, M.H. (2002). The effect of gamma irradiation on the viscosity of two barley cultivars for broiler chicks. Radiation Physics and Chemistry, 63(1): 295-297.

Bahraini, Z.; Salari, S.; Sari, M.; Fayazi, J. and Behgar, M. (2017). Effect of radiation on chemical composition and protein quality of cottonseed meal. Animal Science Journal, 88(9): 1425-1435.

Beheshti Moghadam, M.H.; Rezaei, M.; Behgar, M. and Kermanshahi, H. (2017). Effects of irradiated flaxseed on performance, carcass characteristics, blood parameters, and nutrient digestibility in broiler chickens. Poultry Science Journal, 5(2): 153-163.

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,72(1): 248-254.

Campbell, G.L.; Classen, H.L. and Balance, G.M. (1986). Gamma irradiation treatment of cereal grains for chick diets. Journal of Nutrition, 116(4): 560-569.

Collier, C.T.; Van der klis, J.D.; Deplancke, B.; Anderson, D.B. and Gaskins, H.R. (2003). Effects of tylosin on bacterial mucolysis, clostridium perfringens colonization and Intestinal barrier function in a chick model of necrotic enteritis. Antimicrobial Agents and Chemotherapy, 47(10): 3311-3317.

Engberg, R.M.; Hedemann, M.S.; Steenfeldt, S. and Jensen, B.B. (2004). Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poultry Science, 83(6): 925-938.

Esmaeilipour, O.; Shivazad, M.; Moravej, H.; Aminzadeh, S.; Rezaian, M. and Van Krimpen, M.M. (2011). Effects of xylanase and citric acid on the performance, nutrient retention, and characteristics of gastrointestinal tract of broilers fed low-phosphorus wheat-based diets. Poultry Science, 90(9): 1975-1982.

Gao, F.; Jiang, Y.; Zhou, G.H. and Han, Z.K. (2008). The effects of xylanase supplementation on performance, characteristics of the gastrointestinal tract, blood parameters and gut microflora in broilers fed on wheat-based diets. Animal Feed Science and Technology, 142(1): 173-184.

Garcıa, M.; Lazaro, R.; Latorre, M.A.; Gracia, M.I. and Mateos, G.G. (2008). Influence of enzyme supplementation and heat processing of barley on digestive Traits and productive performance of broilers. Poultry Science, 87(5): 940-948.

Iji, P.A.; Hughes, R.J.; Choct, M. and Tivey, D.R. (2001). Intestinal structure and function of broiler chickens on wheat-based diets supplemented with a microbial enzyme. Asian-Australasian Journal of Animal Science, 14(1): 54-60.

Ikegami, S.; Tsuchihashi, F.; Harada, H.; Tsuchihashi, N.; Nishide, E. and Innami, S. (1990). Effect of viscous indigestible polysaccharides on pancreatic biliary secretion and digestive organs in rats. Journal of Nutrition, 120(4): 353-360.

Jacob, J.P. and Pescatore, A.J. (2012). Using barley in poultry diets-A review. Journal of Applied Poultry Research, 21(4): 915-940.

Jozefiak, D.; Kaczmarek, S.; Rutkowski, A.; Jozefiak, A.; Jensen, B.B. and Engberg, R.M. (2005). Fermentation in broiler chicken gastrointestinal tract as affected by high dietary inclusion of barley and by β-glucanase supplementation. Journal of Animal and Feed Sciences, 14(4): 695-704.

Kalantar, M.; Khajali, F. and Yaghobfar, A. (2016). Effect of cereal type and enzyme addition on performance, pancreatic enzyme activity, intestinal microflora and gut morphology of broilers. Poultry Science Journal, 4(1): 63-71.

Kalantar, M.; Yaghobfar, A. and khajali, F. (2014). Effect of non-starch polysaccharides of barley supplemented with enzyme on growth performance,gut microbial population and intestinal morphology of broiler chickens. Animal Science Journal (Pajouhesh and Sazandegi), 106(1): 121-132. (In Persian).

Knudsen, K.E.B. (2014). Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poultry Science, 93(9): 2380-2393.

Liu, W.C. and Kim, I.H. (2017). Effects of dietary xylanase supplementation on performance and functional digestive parameters in broilers fed wheat-based diets. Poultry Science, 96(3): 566-573.

Luo, D.; Yang, F.; Yang, X.; Yao, J.; Shi, B. and Zhou, Z. (2009). Effects of xylanase on performance, blood parameters, intestinal morphology, microflora and digestive enzyme activities of broilers fed wheat-based diets. Asian-Australasian Journal of Animal Science, 22(9): 1288-1295.

Masouri, L.; Salari, S.; Sari, M.; Tabatabaei, S. and Masouri, B. (2017). Effect of feed supplementation with Satureja khuzistanica essential oil on performance and physiological parameters of broilers fed on wheat- or maize-based diets. British Poultry Science, 58(4): 425-434.

Mathlouthi, N.; Mallet, S.; Saulnier, L.; Quemener, B. and Larbier, M. (2002). Effects of xylanase and β-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. Animal Research, 51(5): 395–406.

Mirzaie, S.; Zaghari, M.; Aminzadeh, S.; Shivazad, M. and Mateos G.G. (2012). Effect of wheat inclusion and xylanase supplementation of the diet on productive performance, nutrient retention and endogenous intestinal enzyme activity of laying hens. Poultry Science, 91(2): 413-425.

Montagne, L.; Pluske, J.R. and Hampson, D.J. (2003). A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, 108(1): 95-117.

National Research Council, NRC. (1994). Nutrient requirements of poultry. 9th ed. National Academy Press. Washington, DC.

Nayefi, M.; Salari, S.; Sari, M. and Behgar, M. (2014). Treatment by gamma or electron radiation decreases cell wall and gossypol content of cottonseed meal. Radiation Physics and Chemistry, 99: 23-25.

Onderci, M.; Sahin, N.; Cikim, G.; Aydin, A.; Ozercan, I.; Ozkose, E. et al. (2008). β-Glucanase-producing bacterial culture improves performance and nutrient utilization and alters gut morphology of broilers fed a barley-based diet. Animal Feed Science and Technology, 146(1): 87-97.

Pang, Y. and Applegate, T. (2007). Effects of dietary copper supplementation and copper source on digesta pH, calcium, zinc, and copper complex size in the gastrointestinal tract of the broiler chicken. Poultry Science, 86(3): 531-537.

Parsaie, S.J.; Shariatmadari, F.; Zamiri, M.J. and Khajeh, K. (2007). Influence of wheat-based diets supplemented with xylanase, bile acid and antibiotics on performance, digestive tract measurements and gut morphology of broilers compared with a maizebased diet. British Poultry Science, 48(5): 594-600.

Rebole, A.; Ortiz, L.T.; Rodriguez, M.L.; Alzueta, C.; Trevino, J. and Velasco, S. (2010). Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and jejunal histomorphology in broiler chickens fed a wheat- and barley-based diet. Poultry Science, 89(2): 276-286.

Ricke, S.C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 82(4): 632-639.

Shakouri, M.D.; Iji, P.A.; Mikkelson, L.L. and Cowieson, A.J. (2009). Intestinal function and gut microflora of broiler chickens as influenced by cereal grains and microbial enzyme supplementation. Journal of Animal Physiology and Animal Nutrition, 93(5): 647-658.

Sharifi, S.D.; Shariatmadari, F. and Yaghobfar, A. (2012). Effects of inclusion of hull-less barley and enzyme supplementation.of broiler diets on growth performance, nutrient digestion and dietary metabolisable energy content. Journal of Central European Agriculture, 13(1): 193-207.

Shawrang, P.; Sadeghi, A.A.; Behgar, M.; Zareshahi, H. and Shahhoseini. G. (2011). Study of chemical compositions, anti-nutritional contents and digestibility of electron beam irradiated sorghum grains. Food Chemistry, 125(2): 376-379.

Shawrang, P.; Sadeghi, A.A. and Ghorbani, B. (2013). The effect of electron beam irradiation on β-glucan content, X-ray diffraction of starch, protein subunit patterns, and in vivo digestibility of barley grain in cockerels. Turkish Journal of Veterinary and Animal Sciences, 37(4): 443-448.

Sieo, C.C.; Abdullah, N.; Tan, W.S. and Ho, Y.W. (2005). Influence of β-glucanase-producing Lactobacillus strains on intestinal characteristics and feed passage rate of broiler chickens. Poultry Science, 84(5): 734-741.

Slominski, B.A. (2011). Recent advances in research on enzymes for poultry diets. Poultry Science, 90(9): 2013-2023.

Smits, C.H.M.; Veldman, A., Verkade, H.J. and Beynen, A.C. (1998). The inhibitory effect of carboxy methyl cellulose with high viscosity on lipid absorption in broiler chickens coincides with reduced bile salt concentration and raised microbial numbers in the small intestine. Poultry Science, 77(10): 1534-1539.

Vahjen, W.; Glaser, K.; Schafer, K. and Simon, O. (1998). Influence of xylanase-supplemented feed on the development of selected bacterial groups in the intestinal tract of broiler chicks. Journal of Agricultural Science, 130(4): 489-500.

VanLeeuwen, P.; Mouven, J.M.V.M.; VanderKlis, J.D. and Verstegen, M.W.A. (2004). Morphology of the small intestinal mucosal surface of broiler in relation to age, diet formulation, small intestinal microflora and performance. British Poultry Science, 45(1): 41-48.

Villamide, M.J.; Fuente, J.M.; Perez de ayala, P. and Flores, A. (1997). Energy evaluation of eight barley cultivars for poultry: effect of dietary enzyme addition. Poultry Science, 76(6): 834-840.

Viveros, A.; Brenes, A.; Pizarro, M. and. Castano, M. (1994). Effect of enzyme supplementation of a diet based on barley, and autoclave treatment, on apparent digestibility, growth performance and gut morphology of broilers. Animal Feed Science and Technology, 48(3): 237-251.

Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C. and Brenes, A. (2011). Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poultry Science, 90(3): 566-578.

Worthington, C.C. (1991). Worthington enzyme manual related Biochemical. 3rd ed. Freehold, New jersey, Pp: 212-215.

Wu, Y.B.; Ravindran, V.; Thomas, D.J.; Birtles, M.J. and Hendriks, W.H. (2004). Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. British Poultry Science, 45(1): 76-84.        

Xu, Z.R.; Hu, C.H.; Xia, M.S.; Zhan, X.A. and Wang, M.Q. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Science, 82(6): 1030-1036.

Yang, Y.; Iji, P.A.; Kocher, A.; Mikkelsen, L.L. and. Choct, M. (2008). Effects of xylanase on growth and gut development of broiler chickens given a wheat-based diet. Asian-Australasian Journal of Animal Science, 21(11): 1659-1664.

Yu, Y. and Wang, J. (2007). Effect of g-ray irradiation on starch granule structure and physicochemical properties of rice. Food Research International, 40(2): 297-303.