Compare the total immunoglobulin assays using turbidity and precipitation test in common carp exposed to synthesized silver nanoparticles using sargassum seaweed

Document Type : Research Paper

Authors

1 Assitance Professor, Department of Fisheries, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran

2 Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Associate Professor of Basic Sciences department, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz, Iran

4 Professor, Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

Immunoglobulins are serum proteins that produced by the plasma and humoral immune responses are important components commonly by serological methods for the measurement. In this study, at first the synthesis of silver nanoparticles was performed using biological method with sargassum seaweed, then the impact of this nanoparticle on the total immunoglobulin of common carp using two different methods of turbidity and precipitation test The impact of nanoparticles on the total immunoglobulin using two methods: turbidity and sediment exposed to three concentration (0.11, 1.13, 5.67 mg/L AgNP) of this silver nanoparticles were studied for 14 days.. using were compared. Results obtained from UV-Vis spectroscopy and TEM confirmed biosynthesis of silver nanoparticles using this algae. The synthesized silver nanoparticles were predominately spherical shape and 32/54 nm size and maximum absorption peak were detected in the range of 406 nm. The results of the measurement of serum immunoglobulin using turbidity and precipitation tests indicating no significant differences in the treatments with control (p>0.05). As well as between the amount of serum immunoglobulin in each treatment sample at different days showed no statistically significant difference (p>0.05). In conclusion our results indicate that silver nanoparticles synthesized using Sargassum angustifolium, had no effect on total serum immunoglobulin levels measured by both methods inhibition or stimulation.

Keywords

Main Subjects


باباپور، عباس؛ سمیعی، لاله؛ اخوان، امید و مشفق، علیرضا (1386). تأثیر غلظت نیترات نقره بر تشکیل نانوذرات نقره در سیستم Ag-Sio2 به روش سل- ژل، مجله پژوهش فیزیک ایران. دوره 7، شماره 4، صفحات 213-218.
عطایی­مهر، ب؛ باقری، پ؛ امتیازجو، م و یوسفی­سیاهکلرودی، س. (۱۳۹۳). بررسی اثر گیاه آلوئه­ورا بر تغییرات میزان ایمونوگلوبولین­های IgM، IgG و IgA، پروتئین کل و شمارش تفریقی گلبول­های سفید ماهی قزل­آلای رنگین­کمان. مجله پژوهش­های جانوری، دوره ۲۷، شماره ۱، صفحات 99-89.
علیشاهی، مجتبی (1388). مقدمه­ای بر ایمنی­شناسی آبزیان. تالیف: پی. سوآین، پی کی. ساهو واس. آیاپان. چاپ اول، انتشارات دانشگاه شهید چمران اهواز، صفحات 59-58، 400.
کلباسی، محمدرضا؛ عبدالله­زاده، اسماعیل و سالاری­جو، حمید (1391). تأثیرات نانوذرات نقره کلوئیدی بر جمعیت فلور باکتریایی روده ماهی قزل­آلای رنگین­کمان (Oncorhynchus mykiss)، مجله تحقیقات دامپزشکی. دوره 67، شماره 2، صفحات 189-181.
Ahmed, M.; Karns, M.; Goodson, M.; Rowe, J.; Hussain, S.M.; Schlager, J.J. and Hong, Y. (2008). DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology, 233 (3): 404-410.
Amar, E.C.; Kiron, V.; Satoh S. and Watanabe, T. (2004). Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss) associated with dietary intake of carotenoids from natural products. Fish shelfish Immunology, 16 (4): 527-537.
Asharani, P.V.; Mun, G.L.K.; Hande, M.P. and Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3 (2): 279-290.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, (72): 248-254.
Britti, D.; Massimmini, G.; Angelo, P.; Luciani, A. and Boari, A. (2005). Evaluation of serum enzyme activities aspredictors of passive transfer status in lambs. JAVMA, tournal of the American Veterinary Medical Association, 226: 951-955.
Canesi, L.; Ciacci, C.; Vallotto, D.; Gallo, G.; Marcomini, A. and Pojana, G. (2009). In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquatic Toxicology, 96 (2): 151-158.
Hansen, B.H.; Romma, S.; Garmo, O.A.; Pedersen, S.A.; Olsvik, P.A. and Andersen, R.A. (2007). Induction and activity of oxidative stress-related proteins during waterborne Cd/Zn-exposure in brown trout (Salmo trutta). Chemosphere, 67 (11): 2241-2249.
Jegadeeswaran, P.; Shivaraj, R. and Venckatesh, R. (2012). Green synthesis of silver nanoparticles from extract of Padina tatrastromatica laef. Digest Journal of Nanomaterials and Biostructures, 7 (3): 991-998.
Kannan, R.R.; Arumugam, R.; Ramya, D.; Manivannan, K. and Anantharaman, P. (2013). Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Applied Nanosci, 3: 229-233.
Klaper, R.; Arndt, D.; Setyowati, K.; Chen, J. and Goetz, F. (2010).  Functionalization impacts the effects of carbon nanotubes on the immune system of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology, 100 (2): 211-217.
Kumar, P.; Senthamil Selvi, S.; Lakshmi Prabha, A.; Prem Kumar, K.; Ganeshkumar, R.S. and Govindaraju, M. (2012). Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano Biomedicine Engineering, 4 (1): 2-16.
Li, S.; Shen, Y.; Xie, A.; Yu, X.; Qiu, L.; Zhang, L. and Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum leaf extract. Green Chemistry, 9: 852-858.
Mansuya, P.; Aruna, P.; Sridhar, S.; Kumar, J.S. and Babu, S. (2010). Antibacterial activity and qualitative phytochemical analysis of selected seaweeds from Gulf of Mannar Region. Journal of Experimental Science, 1 (8): 23-26.
McEvan, A.D.; Fisher, E.W.; Selman, I.E. and Penhale, W.J. (1970). A turbidity test for the estimation of immune globulin levels in neonatal calf serum. Clinica Chimica Acta, 27: 155-163.
Nithya, R. and Ragunathan, R. (2009). Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest Journal of Nanomaterials and Biostructures, 4 (4): 623-629.
Prathna, T.C.; Mathew, L.; Chandrasekaran, N.; Raichur, A.M. and Mukherjee, A. (2010). Biomimetic Synthesis of Nanoparticles: Science, Technology and Applicability, Edited A. Mukherjee, InTech Publishers, Croatia, Pp: 1-20.
Remyla, S.R.; Ramesh, M.; Sajwan, K.S. and Senthil Kumar, K. (2008). Influence of zinc on cadmium induced hematological and biochemical responses in reshwater teleost fish Catla catla. Fish physiology and Biochemistry, 34 (2): 169-174.
Riche, M. (2007). Analysis of refractometry for determining total plasma protein in hybrid striped bass (Morone chrysops × M. saxatilis) at various salinities. Aquaculture, 264 (1-4): 279-284.
Rohlenova, K.;  Morand, S.;  Hyršl, P.; Tolarova, S.; Flajšhans, M. and Šimkova, A. (2011). Are fish immune systems really affected by parasites? an immunoecological study of common carp (Cyprinus carpio). Parasites and Vectors, 4: 120-138.
Saraniya, J.; Bhimba, B.V. and Peter, D.M. (2013). Production of biogenic silver nanoparticles using Sargassus longifolium and its applications. Indian Journal of Geo-Marine Science, 42 (1): 125-130. 
Sharma, R.P. (1988). Evaluation of pesticide immunotoxicity. Toxicology and Industrial Health, 4 (3): 3-25.
Singaravelu, G.; Arockiamary, J.S.; Kumar, V.G. and Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B Biointerfaces, 57 (1): 97-101.
Suriya, J.; Bharathi R.S.; Sekar, V. and Rajasekaran, R. (2012). Biosynthesis of silver nanoparticles and its antibacterial activity using seaweed Urospora sp. African Journal of Biotechnology, 11 (58): 12192-12198.