Isolation and identification of tannin-degrading bacteria from deer gut and potency for improving nutritional value of tannin rich plants

Document Type : Research Paper

Authors

1 Professor, Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

2 MSc Graduated, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

3 Professor, Department of Biology, Faculty of Science, and Biotechnology and Biological Science Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran

4 Professor, Department of Microbiology, Faculty of Veterinary Medicine, University of Basrah, Basrah, Iraq

Abstract

    This experiment was conducted to isolate and identify tannin-degrading bacteria from deer gut and to use these bacteria in improving of the nutritive value and gas production parameters of conocarpus and eucalyptus leaves. Isolation, tannase enzyme activities and processing of eucalyptus and conocarpus leaves with these isolates was conducted for 10 days. The result of molecular identification based on DNA sequencing indicated that isolates of A1, A2, A3, A4, A5, A7, A8 and A9 were similar to Klebsiella pneumoniae while A6 isolate belonged to Acinetobacter sp. Acinetobacter sp. and K. pneumoniae A2 had the highest and lowest enzymatic activity of tannase, respectively. Bacterial fermentation decreased tannin of conocarpus and eucalyptus leaves and the lowest was for processing with K. pneumoniae A7 and Acinetobacter sp A6. Bacterial processing had no effect on the gas production potential of conocarpus leaves, but the gas production rate was increased; while ferementation caused an increase in the gas production potential and rate of eucalyptus leaves. The highest fermentation parameters were found in conocarpus and eucalyptus leaves processed with K. pneumoniae A9. These results indicated that K. pneumoniae and Acinetobacter sp. as tannin degraders isolated from deer gut improved fermentation parameters of conocarpus and eucalyptus leaves and can be used to enhance the nutritive value of tannin rich plants.

Keywords


Aguilar, C. N., Cruz, M., Rodriguez,Gutierrez-Sanchez, R., Ramirez-Coronel, G., & Augur. A.C. (2004). Catechin degradation by several fungal strains isolated from Mexican desert. Journal of Microbiol Biotechnology, 14: 426-429.
Al Koaik, F., El-Waziry, AM., Khalil, A.I., Metwally, H., & Al-Mahasneh. M.A. (2014). Evaluation of Conocarpus (Conocarpus erectus) Leaves and Bermuda Grass (Cynodon dactylon L.) Using Chemical Analysis and In Vitro Gas Production Technique. Bulgarian Journal of Agriculture Science, 20: 824-829.
Allen, M.E., (2005). MacConkey agar plates protocols. American Society for Microbiology. https://www.asmscience.org/content/education/protocol/protocol.2855.
AOAC. (1990). Official method No. 984.13. In ‘Official method of analysis’. 15th edn. (Ed.KHelrich) pp. 191–201. (Association of Official Analytical Chemists Inc.: Arlington, VA).
Ausubel, F. M., Brent, R., Kingstone, R.E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl. K. (1992). Short Protocols in Molecular Biology, Second edition. JohnWiley and Sons, New York, pp. 1–15.6.
Babaei, Y., Rouzbehan, Y., & Alipour, D. (2015). Effect of rumen bacteria from sheep adapted to a tanninferous diet on in vitro fermentation parameters of pistachio hulls using bovine inoculum. Iranian Journal of Veterinary Research, 16:357-362.
Bagheripour, E., Rouzbehan, Y., & Alipour, D. (2008). Effects of ensiling, air-drying and addition of polyethylene glycol on in vitrogas production of pistachio by-products. Animal Feed Science and Technology, 146: 327-336.
Belur, P.D., Gopal, M., Nirmala, K.R., & Basavaraj. N. (2010). Production of novel cell-associated tannase from newly isolated Serratia ficaria DTC. Journal of Microbiology and Biotechnology, 20: 732-736.
FASS. Guide for the care and use of agricultural animals in research and teaching, 3rd ed. Federation of Animal Science Societies, Champaign, IL.2010.
Hemraj, V., Diksha, S., & Avneet, G. (2013). A review on commonly used biochemical test for bacteria. Innovare Journal of Life Science, 1: 1-7.
Hiura, T., Hashidoko, Y., Kobayashi, Y., & Tahara, S. (2010). Effective degradation of tannic acid by immobilized rumen microbes of a sika deer (Cervus nippon yesoensis) in winter. Anim feed Science and Techology, 155(1):1-8.
Jadhav, U., Kadu, S., Thokal, N., Padul, M., Dawkar, V., Chougale, A., Salve, A., & Patil, M. (2011). Degradation of tannic acid by cold-adapted Klebsiella sp NACASA1 and phytotoxicity assessment of tannic acid and its degradation products.  Environmental Science Pollution R, 18: 1129-1138.
Kátia, K.S., Albuquerque, A., Wendell, W.C., Albuquerque Romero, M.P.B., Costa Juanize Matias Batista, S., Daniela, A.V., Marques, Raquel Pedrosa Bezerra, Polyanna N., Herculano Ana, Porto. L.F. (2020). Biotechnological potential of a novel tannase-acyl hydrolase from Aspergillus sydowii using waste coir residue: Aqueous two-phase system and chromatographic techniques. Biocatalysis Agriculture Biotechnology, 23: 101453.
Kohl, K. D., Stengel, A., & Dearing. M.D. (2016). Inoculation of tannin‐degrading bacteria into novel hosts increases performance on tannin‐rich diets. Environmental Microbiology, 18: 1720-1729.
Kumar, M., Beniwal, V., & Salar, R.K. (2015). Purification and characterization of a thermophilic tannase from Klebsiella pneumoniae KP715242. Biocatalysis Agriculture Biotechnology, 4(4): 745-751.
Lotfi, R., & Rouzbehan, Y. (2011). The in vitroorganic matter digestibility of pistachio hull using rumen fluid in Taleshi sheep. Iranian Journal of Animal Science, 42: 231-237 (abst.).
Makkar, H. P. S., & Becker K. (1998). Do tannins in leaves of trees and shrubs from African and Himalayan regions differ in level and activity. Agroforestem System, 40: 59-68.
Mandal, S., & Ghosh, K. (2013). Isolation of tannaseproducing microbiota from the gastrointestinal tracts of some freshwater fish. Journal of Applied Ichthyology, 29: 145-153.
Mason, C.J., Lowe-Power, T.M., Rubert-Nason, K.F., Lindroth, R.L., & Raffa. K.F. (2016). Interactions between Bacteria And Aspen Defense Chemicals at the Phyllosphere – Herbivore Interface. Journal of Chememistry Ecology, 42 (3): 193-201.
Mosleh, H., Naghiha, A., Keshtkaran, A. N., & Khajavi. M. (2014). Isolation and identification of tannin-degrading bacteria from native sheep and goat feces in Kohgiloye and Boyer-Ahmad Province.  International Journal Advantage Biological Biomedical Research, 2: 176-180.
Odenyo, A. A., Bishop, R., Asefa, G., Jamnadass, R., Odongo, D., & Osuji. P. (2001). Characterization of  tannin-tolerant bacterial isolates from East African ruminants. Anaerobe, 7: 5-15.
Orskov, E. R., & McDonald. P. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, 92: 499-503.
Osawa, R. (1990). Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from feces of koalas. Applied Environmental Microbiology, 56: 829-831.
Pepi, M., Cappelli S., Hachicho, N., Perra, G., Renzi, M.,  Tarabelli, A., Altieri, R., Esposito, A., Focardi, S. E., & Heipieper. H. J. (2013). Klebsiella sp. strain C2A isolated from olive oil mill waste is able to tolerate and degrade tannic acid in very high concentrations. FEMS Microbiology Letter, 343: 105-112.
Raghuwanshi, S., Misra, S., & Saxena. R. K. (2014). Treatment of wheat straw using tannase and white-rot fungus to improve feed utilization by ruminants. Journal of Animal Science and Biotechnology, 5:13.
Rakesh, D. D., Bhat, T. K., & Singh. B. (2000). Effect of fungal treatment on composition, tannin levels and digestibility of black locust (Robinia pseudoacacia) leaves. Journal General Applied Microbiology, 46: 99-103.
Sallam, S. M., Bueno, I. C., Nasser, M. E., & Abdalla. A. L. (2010). Effect of eucalyptus (Eucalyptus citriodora) fresh or residue leaves on methane emission in vitro. Italian Journal of Animal Science, 9, e58
SAS Institute Inc (2002). Statistical Analysis System, User’s Guide: Statistics, Version 9.1. SAS Institute Cary, NC, USA.
Sasaki, E., Shimada, T., Osawa, R., Nishitani, Y., Spring, S., & Lang. E. (2005). Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse Apodemus speciosus, feeding on tannin-rich acorns. System Appliled Microbiology, 28: 358-365.
Sharma, S., Bhat, R. K., & Dawra. R. K. (2000). A spectrophotometric method for assay of tannase using rhodanine. Italian Journal of Animal Science, 279: 85-89.
‫Sharma, N.K., Beniwal V., Kumar, N., Kumar, S., Pathera, A.K., & Ray. A. (2014). Production of tannase under solid-state fermentation and its application in detannification of guava juice. Production of tannase under solid-state fermentation and its application in detannification of guava juice. Preparative Biochem Biotechnology, 44 (3): 281-290.
Sharma, D., Mal, G., Kannan, A., Bhar, R., Sharma, R., & Singh. B. (2017). Degradation of euptox A by tannase-producing rumen bacteria from migratory goats. Journal of Applied Microbiology, 123 (5): 1194-1202.
Sivashanmugam, K., & Jayaraman, G. (2011). Media optimization for extra cellular tannase production by Klebsiella pneumoniae MTCC 7162 using response surface methodology. African Journal of Microbiological Research, 5: 3611-3615.
Skene, I. K., & Brooker, J. D. (1995). Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium. Anaerobe, 1: 321-327.
Smith, A. H., Zoetendal, E., & Mackie. R. I. (2005). Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microbiology Ecology, 50: 197-205.
Tahmourespour, A., Tabatabaei, N., Khalkhali, H., & Amini. I. (2016). Tannic acid degradation by Klebsiella strains isolated from goat feces. Iranian Journal of Microbiology, 8: 14.
 Tahmourespour, A., Tabatabaei, N., Khalkhali, H., & Amini, I. (2017). Study of Tannin-degrading bacteria isolated from Pistachio soft hulls and feces of goat feeding on it. Biology Journal of Microorganism, 5.
Talukdar, S., Ringø, E, & Ghosh, K. (2016). Extracellular tannase-producing bacteria detected in the digestive tracts of freshwater fishes (Actinopterygii: Cyprinidae and Cichlidae). Acta Ichthyol Piscat, 46: 201.
Tamura, K., Nei, M.J.,  & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software version 4.0. Molecular Biological of Evolutionment, 24:1596-1599.
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation on animal nutrition. Journal of Dairy Science, 74: 3583-3597.
Weisburg, W. G., Borns, S. M., Pelltier, D. A., & Lane. D. J. (1991). 16S Ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173: 697-703.