A survey on the sedation effects of medetomidine, dexmedetomidine and their combination with acepromazine on cardiovascular function in dog

Document Type : Research Paper

Authors

1 Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Assistant professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Associate professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

4 Graduated, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

    Medetomidine and dexmedetomidine are the two new alpha-2 agonists available for use in veterinary anesthesia. These drugs are employed for sedation and premedication in small animals. The present study aimed to investigate the effects of medetomidine and dexmedetomidine alone and in combination with acepromazine on sedation, cardiovascular function and electrocardiography in dogs. Sixty dogs were randomly divided into four equal groups. The dogs received one of the treatments of medetomidine (10 μg/kg), dexmedetomidine (5 μg/kg), medetomidine (10 μg/kg) with acepromazine (0.05 mg/kg) and dexmedetomidine (5 μg/kg) with acepromazine (0.05 mg/kg) intramuscularly. Sedation levels, heart rate, non-invasive arterial blood pressure, respiratory rate, body temperature and electrocardiogram were carefully recorded in dogs up to 20 minutes after administration. Sedation scores were significantly higher in groups of medetomidine with acepromazine and dexmedetomidine with acepromazine, at 5 and 20 minutes in comparison to groups of medetomidine and dexmedetomidine alone. Comparison of sedation scores in each group showed a significant increase over time. The comparison of heart rate, within the groups, showed a significant decrease when compared with the baseline value. The respiratory rate showed a decreasing trend in all groups over time. The amplitude of the P wave decreased and the P-R and Q-T intervals increased during the evaluation period in all groups. Sinus arrhythmia, AV-block grade 1, and sinus arrest were seen after the administration of sedative drugs in all groups. In conclusion, it is inferred that the addition of acepromazine to medetomidine and dexmedetomidine increases the sedation level. Heart rate decreased in medetomidine and dexmedetomidine groups and the addition of acepromazine exacerbated this decrease. The combination of acepromazine with medetomidine and dexmedetomidine did not also reduce the occurrence of arrhythmias in the dog.

Keywords


Ahmad, R. A., Kinjavdekar, P., Aithal, H. P., Pawde, A. M., & Kumar, D. (2013). Potential use of dexmedetomidine for different levels of sedation, analgesia and anaesthesia in dogs. Veterinarni Medicina58(2), 87-95.
Alvaides, R. K., Neto, F. T., Aguiar, A. J. D. A., Campagnol, D., & Steagall, P. V. M. (2008). Sedative and cardiorespiratory effects of acepromazine or atropine given before dexmedetomidine in dogs. Veterinary Record162(26), 852-856.
Avdosko, G., Birgele, E., & Mencendorfa, L. (2010). Changes in electrocardiogram of Cocker Spaniel and German Shepherd dogs during anesthesia. Veterinarija Ir Zootechnika, 49(71), 8-16.
Borges, L. B. P., Nishimura, L. T., Carvalho, L. L., Cerejo, S. A., Auckburally, A., & Mattos-Junior, E. (2016). Behavioral and cardiopulmonary effects of dexmedetomidine alone and in combination with butorphanol, methadone, morphine or tramadol in conscious sheep. Veterinary Anaesthesia and Analgesia, 43(5), 549–560.
Cardoso, C. G., Marques, D. R., Da Silva, T. H. M., & De Mattos-Junior, E. (2014). Cardiorespiratory, sedative and antinociceptive effects of dexmedetomidine alone or in combination with methadone, morphine or tramadol in dogs. Veterinary Anaesthesia and Analgesia, 41(6), 636–643.
Cardoso, H. M., Padilha, V. S., Tocheto, R., Regalin, D., Gehrcke, M. I., & Oleskovicz, N. (2016). Electrocardiographic, echocardiographic, and indirect blood pressure evaluation in dogs subjected to different sedation protocols. Ciencia Rural46(11), 2043-2048.
Congdon, J. M., Marquez, M., Niyom, S., & Boscan, P. (2011). Evaluation of the sedative and cardiovascular effects of intramuscular administration of dexmedetomidine with and without concurrent atropine administration in dogs. Journal of the American Veterinary Medical Association, 239(1), 81-89.
Doyle, D. J., & Garmon, E. H. (2019). American Society of Anesthesiologists classification (ASA class). In Stat Pearls [Internet], Stat Pearls Publishing. Available from: https://europepmc.org.
Gomez Villamandos, R., Palacios, C., Benitez, A., Granados, M. M., Domínguez, J. M., Lopez, I., Ruiz, I., Aguilera, E., & Santisteban, J. M. (2006). Dexmedetomidine or medetomidine premedication before propofol–desflurane anaesthesia in dogs. Journal of Veterinary Pharmacology and Therapeutics29(3), 157-163.
Granholm, M., McKusick, B. C., Westerholm, F. C., & Aspegren, J. C. (2007). Evaluation of the clinical efficacy and safety of intramuscular and intravenous doses of dexmedetomidine and medetomidine in dogs and their reversal with atipamezole. Veterinary Record160(26), 891-897.
Hanton, G., & Rabemampianina, Y. (2006). The electrocardiogram of the Beagle dog: reference values and effect of sex, genetic strain, body position and heart rate. Laboratory Animals, 40(2), 123-136.
Huupponen, E., Maksimow, A., Lapinlampi, P., Sarkela, M., Saastamoinen, A., Snapir, A., Scheinin, H., Scheinin, M., Merilainen, P., Himanen, S. L., & Jaaskelainen, S. (2008). Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. ACTA Anaesthesiology Scandinavica, 52(2), 289-294.
Ko, J. C. H., Fox, S. M., & Mandsager, R. E. (2000). Sedative and cardiorespiratory effects of medetomidine, medetomidine-butorphanol, and medetomidine-ketamine in dogs. Journal of the American Veterinary Medical Association, 216(10), 1578-1583.
Kuo, W. C., & Keegan, R. D. (2004). Comparative cardiovascular, analgesic and sedative effects of medetomidine, medetomidine-hydromorphone, and medetomidine-butorphanol in dogs. American Journal of Veterinary Research, 65(7), 931-937.
Kuusela, E., Raekallio, M., Vaisanen, M., Mykkanen, K., Ropponen, H., & Vainio, O. (2001). Comparison of medetomidine and dexmedetomidine as premedicants in dogs undergoing propofol-isoflurane anesthesia. American Journal of Veterinary Research, 62(7), 1073-1080.
Lemke, K. A. (2004). Perioperative use of selective alpha-2 agonists and antagonists in small animals. Canadian Veterinary Journal, 45(6), 475-480.
Leppanen, M. K., Mc Kusick, B. C., Granholm, M. M., Westerholm, F. C., Tulamo, R., & Short, C.E. (2006). Clinical efficacy and safety of dexmedetomidine and buprenorphine, butorphanol or diazepam for canine hip radiography. The Journal of Small Animal Practice47(11), 663-669.
Monteiro, E. R., Figueroa, C. D., Choma, J. C., Campagnol, D., & Bettini, C. M. (2008). Effects of methadone, alone or in combination with acepromazine or xylazine, on sedation and physiologic values in dogs. Veterinary Anaesthesia and Analgesia, 35(6), 519-527.
Monteiro, E. R., Junior, A. R., Assis, H. M. Q., Campagnol, D., & Quitzan, J. G. (2009). Comparative study on the sedative effects of morphine, methadone, butorphanol or tramadol, in combination with acepromazine, in dogs. Veterinary Anaesthesia and Analgesia, 36(1), 25-33.
Puighibet, Z., Costa Farre, C., Santos, L., Canfran, S., & Gomez de Segura, I. A. (2015). The sedative effects of intramuscular low‐dose medetomidine in combination with butorphanol or methadone in dogs. Veterinary Anaesthesia and Analgesia42(6), 590-596.
Raszplewicz, J., MacFarlane, P., & West, E. (2013). Comparison of sedation scores and propofol induction doses in dogs after intramuscular premedication with butorphanol and either dexmedetomidine or medetomidine. Veterinary Anaesthesia and Analgesia, 40(6), 584-589.
Sarchahi, A. A., Vesal, N., Nikahval, B., & Karampour, A. (2009). Comparison of the effects of different doses of acepromazine-xylazine on the electrocardiogram in dogs. Iranian Journal of Veterinary Research10(3), 208-215.
Simoes, C. R., Monteiro, E. R., Rangel, J. P. P., Nunes-Junior, J. S., & Campagnol, D. (2016). Effects of a prolonged infusion of fentanyl, with or without atropine, on the minimum alveolar concentration of isoflurane in dogs. Veterinary Anaesthesia and Analgesia, 43(2), 136-144.
Sinclair, M. D. (2003) A review of the physiological effects of alpha 2-agonists related to the clinical use of medetomidine in small animal practice. Canadian Veterinary Journal, 44(11), 885–897.
Thomsen, M. B., Volders, P. G. A., Beekman, J. D. M., Matz, J., & Vos, M. A. (2006). Beat-to-beat variability of repolarization determines proarrhythmic outcome in dogs susceptible to drug-induced torsades de pointes. Journal of the American College of Cardiology, 48(6), 1268-1276.
Tilley, L. P., & Goodwin, J. K. (2001). Manual of Canine and Feline Cardiology (3th Edition). W.B. Saunders Company, Philadelphia, USA. Pp: 43-58.
Tilley, L. P., & Smith, F. W. K. (2000). The 5- Minute Veterinary Consult: Canine and Feline (2nd Edition). Lippincott Williams and Wilkins, Baltimore, USA. Pp: 298-300.
Valverde, A., Cantwell, S., Hernández, J., & Brotherson, C. (2004). Effects of acepromazine on the incidence of vomiting associated with opioid administration in dogs. Veterinary Anesthesia and Analgesia, 31(1), 40-45.
Vesal, N., Sarchahi, A. A., Nikahval, B., & Karampour, A. (2011). Clinical evaluation of the sedative properties of acepromazine xylazine combinations with or without atropine and their effects on physiologic values in dogs. Journal of the Faculty of Veterinary Medicine University of Zagreb81(4), 485-498.